ISOMETRIES FOR THE MODULUS METRIC ARE QUASICONFORMAL MAPPINGS

被引:5
作者
Betsakos, Dimitrios [1 ]
Pouliasis, Stamatis [2 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Math, Thessaloniki 54124, Greece
[2] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79409 USA
关键词
Modulus metric; conformal mapping; quasiconformal mapping; condenser capacity; reduced conformal modulus; extremal length; LIPSCHITZ-CONDITIONS; INEQUALITIES;
D O I
10.1090/tran/7712
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a domain D in R-n, the modulus metric is defined by mu D(x, y) = inf(gamma) cap(D, gamma), where the infimum is taken over all curves gamma in D joining x to y, and "cap" denotes the conformal capacity of the condensers. It has been conjectured by J. Ferrand, G. J. Martin, and M. Vuorinen that isometries in the modulus metric are conformal mappings. We prove the conjecture when n = 2. In higher dimensions, we prove that isometries are quasiconformal mappings.
引用
收藏
页码:2735 / 2752
页数:18
相关论文
共 17 条
[1]  
[Anonymous], 1997, CONFORMAL INVARINANT
[2]   Correction to the article "deformation of plates of small condensers and Belinskii's problem" [J].
Aseev, VV .
SIBERIAN MATHEMATICAL JOURNAL, 2003, 44 (01) :190-193
[3]  
BAGBY T, 1967, J MATH MECH, V17, P315
[4]  
Dubinin V.N., 2014, CONDENSER CAPACITIES
[5]   LIPSCHITZ-CONDITIONS IN CONFORMALLY INVARIANT METRICS [J].
FERRAND, J ;
MARTIN, GJ ;
VUORINEN, M .
JOURNAL D ANALYSE MATHEMATIQUE, 1991, 56 :187-210
[6]   INEQUALITIES AND BI-LIPSCHITZ CONDITIONS FOR THE TRIANGULAR RATIO METRIC [J].
Hariri, Parisa ;
Vuorinen, Matti ;
Zhang, Xiaohui .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (04) :1121-1148
[7]  
Heinonen J., 2006, NONLINEAR POTENTIAL
[8]   On Isometries of Conformally Invariant Metrics [J].
Klen, Riku ;
Vuorinen, Matti ;
Zhang, Xiaohui .
JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (02) :914-923
[9]  
Lehto O., 1973, QUASICONFORMAL MAPPI, V126
[10]  
LEVITSKII BY, 1991, DOKL AKAD NAUK SSSR+, V316, P812