Nonexistence of blow-up solution with minimal L2-mass for the critical gKdV equation

被引:29
作者
Martel, Y [1 ]
Merle, F [1 ]
机构
[1] Univ Cergy Pontoise, Dept Math, F-95302 Cergy Pontoise, France
关键词
D O I
10.1215/S0012-7094-02-11526-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that there exist no blow-up solutions of the critical generalized Korteweg-de Vries (gKdV) equation with minimal L-2-mass, assuming an L-2-decay on the right on the initial data.
引用
收藏
页码:385 / 408
页数:24
相关论文
共 15 条
[1]  
BOURGAIN J, 1995, P INT C MATH ZUR 199, V1, P31
[2]  
Dix D. B., 1998, DIFFER INTEGRAL EQU, V11, P679
[3]   UNIQUENESS OF SOLUTIONS FOR THE GENERALIZED KORTEWEG-DEVRIES EQUATION [J].
GINIBRE, J ;
TSUTSUMI, Y .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (06) :1388-1425
[4]   CONCENTRATION PROPERTIES OF BLOW-UP SOLUTIONS AND INSTABILITY RESULTS FOR ZAKHAROV EQUATION IN DIMENSION-2 .2. [J].
GLANGETAS, L ;
MERLE, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 160 (02) :349-389
[5]  
Kato T., 1983, ADV MATH S, V8, P93
[6]   WELL-POSEDNESS AND SCATTERING RESULTS FOR THE GENERALIZED KORTEWEG-DEVRIES EQUATION VIA THE CONTRACTION PRINCIPLE [J].
KENIG, CE ;
PONCE, G ;
VEGA, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (04) :527-620
[7]   Blow up in finite time and dynamics of blow up solutions for the L2-critical generalized KdV equation [J].
Martel, Y ;
Merle, F .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (03) :617-664
[8]   Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation [J].
Martel, Y ;
Merle, F .
ANNALS OF MATHEMATICS, 2002, 155 (01) :235-280
[9]   Instability of solitons for the critical generalized Korteweg-de Vries equation [J].
Martel, Y ;
Merle, F .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (01) :74-123
[10]   A Liouville theorem for the critical generalized Korteweg-de Vries equation [J].
Martel, Y ;
Merle, F .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2000, 79 (04) :339-425