New applications of Besov-type and Triebel-Lizorkin-type spaces

被引:72
|
作者
Sawano, Yoshihiro [2 ]
Yang, Dachun [1 ]
Yuan, Wen [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Gakushuin Univ, Dept Math, Toshima Ku, Tokyo 1718588, Japan
基金
中国国家自然科学基金;
关键词
Besov space; Triebel-Lizorkin space; Trace; Pseudo-differential operator; MORREY SPACES; DECOMPOSITIONS; VARIABLES;
D O I
10.1016/j.jmaa.2009.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper. the authors prove that Besov-Morrey spaces are proper subspaces of Besov-type spaces B-p,q(s,tau)(R-n) and that Triebel-Lizorkin-Morrey spaces are special cases of Triebel-Lizorkin-type spaces F-p,q(s,tau)(R-n). The authors also establish an equivalent characterization of B-p,q(s,tau)(R-n) when tau is an element of [0, 1/p). These Besov-type spaces B-p,q(s,tau)(R-n) and Triebel-Lizorkin-type spaces F-p,q(s,tau)(R-n) were recently introduced to connect Besov spaces and Triebel-Lizorkin spaces with Q spaces. Moreover, for the spaces B-p,q(s,tau)(R-n) and F-p,q(s,tau)(R-n), the authors investigate their trace properties and the boundedness of the pseudo-differential operators with homogeneous symbols in these spaces, which generalize the corresponding classical results of Jawerth and Grafakos-Torres by taking tau = 0. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:73 / 85
页数:13
相关论文
共 50 条
  • [41] 2-microlocal spaces associated with Besov type and Triebel–Lizorkin type spaces
    Koichi Saka
    Revista Matemática Complutense, 2022, 35 : 923 - 962
  • [42] Riesz potentials in Besov and Triebel-Lizorkin spaces over spaces of homogeneous type
    Yang, DC
    POTENTIAL ANALYSIS, 2003, 19 (02) : 193 - 210
  • [43] Besov and Triebel-Lizorkin spaces on spaces of homogeneous type with applications to boundedness of Calderon-Zygmund operators
    Wang, Fan
    Han, Yongsheng
    He, Ziyi
    Yang, Dachun
    DISSERTATIONES MATHEMATICAE, 2021, 565 : 1 - 113
  • [44] Pointwise Characterizations of Besov and Triebel—Lizorkin Spaces with Generalized Smoothness and Their Applications
    Zi Wei Li
    Da Chun Yang
    Wen Yuan
    Acta Mathematica Sinica, English Series, 2022, 38 : 623 - 661
  • [45] Variable 2-Microlocal Besov-Triebel-Lizorkin-Type Spaces
    Wu, Su Qing
    Yang, Da Chun
    Yuan, Wen
    Zhuo, Ci Qiang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (04) : 699 - 748
  • [46] Characterizations of Morrey type Besov and Triebel-Lizorkin spaces with variable exponents
    Fu, Jingjing
    Xu, Jingshi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 381 (01) : 280 - 298
  • [47] Besov and Triebel–Lizorkin spaces associated with Laguerre expansions of Hermite type
    P. Plewa
    Acta Mathematica Hungarica, 2017, 153 : 143 - 176
  • [48] Riesz Potentials in Besov and Triebel–Lizorkin Spaces over Spaces of Homogeneous Type
    Dachun Yang
    Potential Analysis, 2003, 19 : 193 - 210
  • [49] Equivalent Quasi-Norms of Besov-Triebel-Lizorkin-Type Spaces via Derivatives
    Wu, Suqing
    Yang, Dachun
    Yuan, Wen
    RESULTS IN MATHEMATICS, 2017, 72 (1-2) : 813 - 841
  • [50] Applications of Herz-type Triebel-Lizorkin spaces
    Xu, JS
    Yang, DC
    ACTA MATHEMATICA SCIENTIA, 2003, 23 (03) : 328 - 338