New applications of Besov-type and Triebel-Lizorkin-type spaces

被引:72
|
作者
Sawano, Yoshihiro [2 ]
Yang, Dachun [1 ]
Yuan, Wen [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Gakushuin Univ, Dept Math, Toshima Ku, Tokyo 1718588, Japan
基金
中国国家自然科学基金;
关键词
Besov space; Triebel-Lizorkin space; Trace; Pseudo-differential operator; MORREY SPACES; DECOMPOSITIONS; VARIABLES;
D O I
10.1016/j.jmaa.2009.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper. the authors prove that Besov-Morrey spaces are proper subspaces of Besov-type spaces B-p,q(s,tau)(R-n) and that Triebel-Lizorkin-Morrey spaces are special cases of Triebel-Lizorkin-type spaces F-p,q(s,tau)(R-n). The authors also establish an equivalent characterization of B-p,q(s,tau)(R-n) when tau is an element of [0, 1/p). These Besov-type spaces B-p,q(s,tau)(R-n) and Triebel-Lizorkin-type spaces F-p,q(s,tau)(R-n) were recently introduced to connect Besov spaces and Triebel-Lizorkin spaces with Q spaces. Moreover, for the spaces B-p,q(s,tau)(R-n) and F-p,q(s,tau)(R-n), the authors investigate their trace properties and the boundedness of the pseudo-differential operators with homogeneous symbols in these spaces, which generalize the corresponding classical results of Jawerth and Grafakos-Torres by taking tau = 0. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:73 / 85
页数:13
相关论文
共 50 条
  • [31] Embedding theorems of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type
    Dachun Yang
    Science in China Series A: Mathematics, 2003, 46 : 187 - 199
  • [32] Herz type Besov and Triebel-Lizorkin spaces with variable exponent
    Shi, Chune
    Xu, Jingshi
    FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (04) : 907 - 921
  • [33] Variable exponent Herz type Besov and Triebel-Lizorkin spaces
    Xu, Jingshi
    Yang, Xiaodi
    GEORGIAN MATHEMATICAL JOURNAL, 2018, 25 (01) : 135 - 148
  • [34] Real interpolations for Besov and Triebel-Lizorkin spaces on spaces of homogeneous type
    Yang, DC
    MATHEMATISCHE NACHRICHTEN, 2004, 273 : 96 - 113
  • [35] Pointwise characterization of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type
    Alvarado, Ryan
    Wang, Fan
    Yang, Dachun
    Yuan, Wen
    STUDIA MATHEMATICA, 2023, 268 (02) : 121 - 166
  • [36] Embedding theorems of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type
    杨大春
    Science China Mathematics, 2003, (02) : 187 - 199
  • [37] Non-smooth atomic decomposition of Triebel-Lizorkin-type spaces
    Sawano, Yoshihiro
    Yang, Dachun
    Yuan, Wen
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2024, 18 (02)
  • [38] Herz type Besov and Triebel-Lizorkin spaces with variable exponent
    Chune Shi
    Jingshi Xu
    Frontiers of Mathematics in China, 2013, 8 : 907 - 921
  • [39] Difference Characterization of Besov and Triebel–Lizorkin Spaces on Spaces of Homogeneous Type
    Fan Wang
    Ziyi He
    Dachun Yang
    Wen Yuan
    Communications in Mathematics and Statistics, 2022, 10 : 483 - 542
  • [40] Decompositions of Besov-Hausdorff and Triebel-Lizorkin-Hausdorff spaces and their applications
    Yuan, Wen
    Sawano, Yoshihiro
    Yang, Dachun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (02) : 736 - 757