Semi-Supervised Learning for Seismic Impedance Inversion Using Generative Adversarial Networks

被引:70
作者
Wu, Bangyu [1 ]
Meng, Delin [1 ]
Zhao, Haixia [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
generative adversarial network; semi-supervised learning; seismic impedance inversion; deep learning; WAVE-FORM INVERSION;
D O I
10.3390/rs13050909
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Seismic impedance inversion is essential to characterize hydrocarbon reservoir and detect fluids in field of geophysics. However, it is nonlinear and ill-posed due to unknown seismic wavelet, observed data band limitation and noise, but it also requires a forward operator that characterizes physical relation between measured data and model parameters. Deep learning methods have been successfully applied to solve geophysical inversion problems recently. It can obtain results with higher resolution compared to traditional inversion methods, but its performance often not fully explored for the lack of adequate labeled data (i.e., well logs) in training process. To alleviate this problem, we propose a semi-supervised learning workflow based on generative adversarial network (GAN) for acoustic impedance inversion. The workflow contains three networks: a generator, a discriminator and a forward model. The training of the generator and discriminator are guided by well logs and constrained by unlabeled data via the forward model. The benchmark models Marmousi2, SEAM and a field data are used to demonstrate the performance of our method. Results show that impedance predicted by the presented method, due to making use of both labeled and unlabeled data, are better consistent with ground truth than that of conventional deep learning methods.
引用
收藏
页码:1 / 17
页数:16
相关论文
共 50 条
[31]   Seismic Horizon Identification Using Semi-Supervised Learning With Virtual Adversarial Training [J].
Wang, Fu ;
Wu, Xinming ;
Wang, Huazhong .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[32]   SEMI-SUPERVISED OBJECT DETECTION IN REMOTE SENSING IMAGES USING GENERATIVE ADVERSARIAL NETWORKS [J].
Chen, Guowei ;
Liu, Lei ;
Hu, Wenlong ;
Pan, Zongxu .
IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, :2503-2506
[33]   Semi-supervised Multi-category Classification with Generative Adversarial Networks [J].
Rastogi, Reshma ;
Gangnani, Ritesh .
PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2019, PT I, 2019, 11941 :286-294
[34]   Semi-Supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks [J].
Yan, Peiyao ;
He, Feng ;
Yang, Yajie ;
Hu, Fei .
IEEE ACCESS, 2020, 8 :54135-54144
[35]   Active semi-supervised learning based on self-expressive correlation with generative adversarial networks [J].
Zhang, Xiao-Yu ;
Shi, Haichao ;
Zhu, Xiaobin ;
Li, Peng .
NEUROCOMPUTING, 2019, 345 :103-113
[36]   SGANRDA: semi-supervised generative adversarial networks for predicting circRNA-disease associations [J].
Wang, Lei ;
Yan, Xin ;
You, Zhu-Hong ;
Zhou, Xi ;
Li, Hao-Yuan ;
Huang, Yu-An .
BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
[37]   Galaxy Image Translation with Semi-supervised Noise-reconstructed Generative Adversarial Networks [J].
Lin, Qiufan ;
Fouchez, Dominique ;
Pasquet, Jerome .
2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, :5634-5641
[38]   Semi-supervised generative adversarial networks with spatial coevolution for enhanced image generation and classification [J].
Toutouh, Jamal ;
Nalluru, Subhash ;
Hemberg, Erik ;
O'Reilly, Una-May .
APPLIED SOFT COMPUTING, 2023, 148
[39]   Medical Image Segmentation Using Semi-supervised Conditional Generative Adversarial Nets [J].
Liu S.-P. ;
Hong J.-M. ;
Liang J.-P. ;
Jia X.-P. ;
Ouyang J. ;
Yin J. .
Ruan Jian Xue Bao/Journal of Software, 2020, 31 (08) :2588-2602
[40]   A Deep Semi-Supervised Learning Approach for Seismic Reflectivity Inversion [J].
Rahman, Sharif ;
Elsheikh, Ahmed H. ;
Jaya, Makky S. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62