Quantum algebra from generalized q-Hermite polynomials

被引:1
|
作者
Mezlini, Kamel [1 ]
Azaiez, Najib Ouled [2 ,3 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, Dept Math, Tunis El Manar 2092, Tunisia
[2] Univ Sfax, Fac Sci Sfax, Dept Math, BP 1171, Sfax 3000, Tunisia
[3] King Faisal Univ, Coll Sci, Dept Math, POB 400, Al Hasa 31982, Saudi Arabia
关键词
q-orthogonal polynomials; q-deformed algebras; Harmonic oscillators; PARABOSE;
D O I
10.1016/j.jmaa.2019.07.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss new results related to the generalized discrete q-Hermite II polynomials (h) over tilde (n,alpha)(x; q), introduced by Mezlini et al. in 2014. Our aim is to give a continuous orthogonality relation, a q-integral representation and an evaluation at unity of the Poisson kernel, for these polynomials. Furthermore, we introduce q-Schrodinger operators and we give the raising and lowering operator algebra corresponding to these polynomials. Our results generate a new explicit realization of the quantum algebra su(q)(1, 1), using the generators associated with a q-deformed generalized para-Bose oscillator. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条