Improving the detection of significant factors using ANOVA-PCA by selective reduction of residual variability

被引:24
作者
Climaco-Pinto, R. [1 ,2 ]
Barros, A. S. [2 ]
Locquet, N. [3 ]
Schmidtke, L. [4 ]
Rutledge, D. N. [1 ,3 ]
机构
[1] AgroParisTech, Chim Analyt Lab, F-75005 Paris, France
[2] Univ Aveiro, Dept Quim, P-3810193 Aveiro, Portugal
[3] INRA AgroParisTech, IAQA, UMR 214, F-75005 Paris, France
[4] Charles Sturt Univ, Natl Wine & Grape Ind Ctr, Wagga Wagga, NSW 2650, Australia
关键词
ANOVA-PCA; ASCA; Error removal; Discrimination; PRINCIPAL COMPONENT ANALYSIS;
D O I
10.1016/j.aca.2009.09.016
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Selective elimination of residual error can be used when applying Harrington's ANOVA-PCA in order to improve the capabilities of the method. ANOVA-PCA is sometimes unable to discriminate between levels of a factor when sources of high residual variability are present. In some cases this variability is not random, possesses some structure and is large enough to be responsible for the first principal components calculated by the PCA step in the ANOVA-PCA. This fact sometimes makes it impossible for the interesting variance to be in the first two PCA components. By using the proposed selective residuals elimination procedure, one may improve the ability of the method to detect significant factors as well as have an understanding of the different kinds of residual variance present in the data. Two datasets are used to show how the method is used in order to iteratively detect variance associated with the factors even when it is not initially visible. A permutation method is used to confirm that the observed significance of the factors was not accidental. (c) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:131 / 142
页数:12
相关论文
共 13 条
[1]   Proteomic analysis of amniotic fluids using analysis of variance-principal component analysis and fuzzy rule-building expert systems applied to matrix-assisted laser desorption/ionization mass spectrometry [J].
Harrington, PD ;
Vieira, NE ;
Chen, P ;
Espinoza, J ;
Nien, JK ;
Romero, R ;
Yergey, AL .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2006, 82 (1-2) :283-293
[2]   Analysis of variance-principal component analysis: A soft tool for proteomic discovery [J].
Harrington, PD ;
Vieira, NE ;
Espinoza, J ;
Nien, JK ;
Romero, R ;
Yergey, AL .
ANALYTICA CHIMICA ACTA, 2005, 544 (1-2) :118-127
[3]  
Hotelling H., 1951, Proceedings of the second Berkeley symposium on mathematical statistics and probability, P23
[4]   ASCA: analysis of multivariate data obtained from an experimental design [J].
Jansen, JJ ;
Hoefsloot, HCJ ;
van der Greef, J ;
Timmerman, ME ;
Westerhuis, JA ;
Smilde, AK .
JOURNAL OF CHEMOMETRICS, 2005, 19 (09) :469-481
[5]  
Mahalanobis P. C., 1936, P NATL I SCI CALCUTT, DOI [DOI 10.1007/S13171-019-00164-5, 10.1007/s13171-019-00164-5]
[6]   Using ANOVA-PCA for discriminant analysis: Application to the study of mid-infrared spectra of carraghenan gels as a function of concentration and temperature [J].
Pinto, Rui Climaco ;
Bosc, Veronique ;
Nocairi, H. ;
Barros, Antonio S. ;
Rutledge, Douglas N. .
ANALYTICA CHIMICA ACTA, 2008, 629 (1-2) :47-55
[7]   Application of the ANOVA-PCA method to stability studies of reference materials [J].
Sarembaud, Julien ;
Pinto, Rui ;
Rutledge, Douglas N. ;
Feinberg, Max .
ANALYTICA CHIMICA ACTA, 2007, 603 (02) :147-154
[8]   ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data [J].
Smilde, AK ;
Jansen, JJ ;
Hoefsloot, HCJ ;
Lamers, RJAN ;
van der Greef, J ;
Timmerman, ME .
BIOINFORMATICS, 2005, 21 (13) :3043-3048
[9]   Bootstrap confidence intervals for principal response curves [J].
Timmerman, Marieke E. ;
Ter Braak, Cajo J. F. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (04) :1837-1849
[10]   Orthogonal projections to latent structures (O-PLS) [J].
Trygg, J ;
Wold, S .
JOURNAL OF CHEMOMETRICS, 2002, 16 (03) :119-128