Capacitance of graphene nanoribbons

被引:63
作者
Shylau, A. A. [1 ]
Klos, J. W. [1 ,2 ]
Zozoulenko, I. V. [1 ]
机构
[1] Linkoping Univ, ITN, S-60174 Norrkoping, Sweden
[2] Adam Mickiewicz Univ Poznan, Fac Phys, Surface Phys Div, PL-61614 Poznan, Poland
来源
PHYSICAL REVIEW B | 2009年 / 80卷 / 20期
基金
瑞典研究理事会;
关键词
QUANTUM CAPACITANCE;
D O I
10.1103/PhysRevB.80.205402
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present an analytical theory for the gate electrostatics and the classical and quantum capacitance of the graphene nanoribbons (GNRs) and compare it with the exact self-consistent numerical calculations based on the tight-binding p-orbital Hamiltonian within the Hartree approximation. We demonstrate that the analytical theory is in a good qualitative (and in some aspects quantitative) agreement with the exact calculations. There are however some important discrepancies. In order to understand the origin of these discrepancies we investigate the self-consistent electronic structure and charge density distribution in the nanoribbons and relate the above discrepancy to the inability of the simple electrostatic model to capture the classical gate electrostatics of the GNRs. In turn, the failure of the classical electrostatics is traced to the quantum mechanical effects leading to the significant modification of the self-consistent charge distribution in comparison to the noninteracting electron description. The role of electron-electron interaction in the electronic structure and the capacitance of the GNRs is discussed. Our exact numerical calculations show that the density distribution and the potential profile in the GNRs are qualitatively different from those in conventional split-gate quantum wires; at the same time, the electron distribution and the potential profile in the GNRs show qualitatively similar features to those in the cleaved-edge overgrown quantum wires. Finally, we discuss an experimental extraction of the quantum capacitance from experimental data.
引用
收藏
页数:9
相关论文
共 34 条
[1]  
Broyden C. G., 1965, MATH COMPUTATION
[2]   Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect [J].
Castro, Eduardo V. ;
Novoselov, K. S. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Dos Santos, J. M. B. Lopes ;
Nilsson, Johan ;
Guinea, F. ;
Geim, A. K. ;
Castro Neto, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 99 (21)
[3]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[4]   Graphene nano-ribbon electronics [J].
Chen, Zhihong ;
Lin, Yu-Ming ;
Rooks, Michael J. ;
Avouris, Phaedon .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) :228-232
[5]   Measurements on quantum capacitance of individual single walled carbon nanotubes [J].
Dai, Junfeng ;
Li, Jun ;
Zeng, Hualing ;
Cui, Xiaodong .
APPLIED PHYSICS LETTERS, 2009, 94 (09)
[6]  
DRESSELHAUS S, 1998, PHYS PROPERTIES CARB, P52407
[7]   Carrier statistics and quantum capacitance of graphene sheets and ribbons [J].
Fang, Tian ;
Konar, Aniruddha ;
Xing, Huili ;
Jena, Debdeep .
APPLIED PHYSICS LETTERS, 2007, 91 (09)
[8]   Electronic structure of gated graphene and graphene ribbons [J].
Fernandez-Rossier, J. ;
Palacios, J. J. ;
Brey, L. .
PHYSICAL REVIEW B, 2007, 75 (20)
[9]   Screening Length and Quantum Capacitance in Graphene by Scanning Probe Microscopy [J].
Giannazzo, F. ;
Sonde, S. ;
Raineri, V. ;
Rimini, E. .
NANO LETTERS, 2009, 9 (01) :23-29
[10]   Graphene at the Edge: Stability and Dynamics [J].
Girit, Caglar Oe ;
Meyer, Jannik C. ;
Erni, Rolf ;
Rossell, Marta D. ;
Kisielowski, C. ;
Yang, Li ;
Park, Cheol-Hwan ;
Crommie, M. F. ;
Cohen, Marvin L. ;
Louie, Steven G. ;
Zettl, A. .
SCIENCE, 2009, 323 (5922) :1705-1708