An algorithm to compute bases and representation matrices for SLn+1-representations

被引:15
作者
Littelmann, P [1 ]
机构
[1] UNIV STRASBOURG 1,IRMA,F-67084 STRASBOURG,FRANCE
关键词
D O I
10.1016/S0022-4049(97)00022-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a basis for irreducible representations of the complex Lie algebra sL(n+1). The basis is obtained by applying certain monomials in the enveloping algebra of SLn+1 to a highest weight vector. In addition we provide a straightening law which can be used to define an algorithm to compute the representation matrix of elements of sL(n+1) with respect to this basis. The method can be generalized to all complex simple Lie algebras with a simply laced root system. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:447 / 468
页数:22
相关论文
共 12 条
[11]  
Lusztig G., 1993, Introduction to Quantum Groups
[12]  
Lusztig G., 1990, Progr. Theoret. Phys. Suppl., V102, P175