An algorithm to compute bases and representation matrices for SLn+1-representations

被引:15
作者
Littelmann, P [1 ]
机构
[1] UNIV STRASBOURG 1,IRMA,F-67084 STRASBOURG,FRANCE
关键词
D O I
10.1016/S0022-4049(97)00022-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a basis for irreducible representations of the complex Lie algebra sL(n+1). The basis is obtained by applying certain monomials in the enveloping algebra of SLn+1 to a highest weight vector. In addition we provide a straightening law which can be used to define an algorithm to compute the representation matrix of elements of sL(n+1) with respect to this basis. The method can be generalized to all complex simple Lie algebras with a simply laced root system. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:447 / 468
页数:22
相关论文
共 12 条
[1]  
[Anonymous], 1990, CONCRETE MATH
[2]  
BOURBAKI N, 1968, ALGEBRE LIE 4 6
[3]  
GELFAND IM, 1950, DOKL AKAD NAUK SSSR+, V71, P1017
[4]  
JOSEPH T, 1995, QUANTUM GROUPS THEIR
[5]   THE CRYSTAL BASE AND LITTELMANN REFINED DEMAZURE CHARACTER FORMULA [J].
KASHIWARA, M .
DUKE MATHEMATICAL JOURNAL, 1993, 71 (03) :839-858
[6]   CRYSTAL BASES OF MODIFIED QUANTIZED ENVELOPING ALGEBRA [J].
KASHIWARA, M .
DUKE MATHEMATICAL JOURNAL, 1994, 73 (02) :383-413
[7]  
LAKSHMIBAI V, 1995, P SUMM SEM BAUFF ALB
[8]   PATHS AND ROOT OPERATORS IN REPRESENTATION-THEORY [J].
LITTELMANN, P .
ANNALS OF MATHEMATICS, 1995, 142 (03) :499-525
[9]  
LITTELMANN P, 1996, PATHS CONES GELFAND
[10]  
LITTELMANN P, 1995, P ICM