Advances in data-driven analyses and modelling using EPR-MOGA

被引:185
作者
Giustolisi, O. [1 ]
Savic, D. A. [2 ]
机构
[1] Tech Univ Bari, Dept Civil & Environm Engn, Engn Fac Taranto, I-74100 Taranto, Italy
[2] Univ Exeter, Sch Engn Comp Sci & Math, Ctr Water Syst, Exeter EX4 4QF, Devon, England
关键词
data-driven modelling; evolutionary computing; groundwater resources; multiobjective optimization; symbolic regression;
D O I
10.2166/hydro.2009.017
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Evolutionary Polynomial Regression (EPR) is a recently developed hybrid regression method that combines the best features of conventional numerical regression techniques with the genetic programming/symbolic regression technique. The original version of EPR works with formulae based on true or pseudo-polynomial expressions using a single-objective genetic algorithm. Therefore, to obtain a set of formulae with a variable number of pseudo-polynomial coefficients, the sequential search is performed in the formulae space. This article presents an improved EPR strategy that uses a multi-objective genetic algorithm instead. We demonstrate that multi-objective approach is a more feasible instrument for data analysis and model selection. Moreover, we show that EPR can also allow for simple uncertainty analysis (since it returns polynomial structures that are linear with respect to the estimated coefficients). The methodology is tested and the results are reported in a case study relating groundwater level predictions to total monthly rainfall.
引用
收藏
页码:225 / 236
页数:12
相关论文
共 20 条
[1]  
Babovic V., 2000, Journal of Hydroinformatics, V1, P35, DOI DOI 10.2166/HYDRO.2000.0004
[2]  
Draper N.R., 1998, Applied Regression Analysis, Vthird, DOI DOI 10.1002/9781118625590.CH15
[3]   1977 RIETZ LECTURE - BOOTSTRAP METHODS - ANOTHER LOOK AT THE JACKKNIFE [J].
EFRON, B .
ANNALS OF STATISTICS, 1979, 7 (01) :1-26
[4]   A multi-model approach to analysis of environmental phenomena [J].
Giustolisi, O. ;
Doglioni, A. ;
Savic, D. A. ;
Webb, B. W. .
ENVIRONMENTAL MODELLING & SOFTWARE, 2007, 22 (05) :674-682
[5]   An evolutionary multiobjective strategy for the effective management of groundwater resources [J].
Giustolisi, O. ;
Doglioni, A. ;
Savic, D. A. ;
di Pierro, F. .
WATER RESOURCES RESEARCH, 2008, 44 (01)
[6]  
GIUSTOLISI O, 2004, P HYDR 2004, V1, P787
[7]  
GIUSTOLISI O, 2004, 200407 U EX CTR WAT
[8]   A symbolic data-driven technique based on evolutionary polynomial regression [J].
Giustolisi, Orazio ;
Savic, Dragan A. .
JOURNAL OF HYDROINFORMATICS, 2006, 8 (03) :207-222
[9]   Optimal design of artificial neural networks by a multiobjective strategy: groundwater level predictions [J].
Giustolisi, Orazio ;
Simeone, Vincenzo .
HYDROLOGICAL SCIENCES JOURNAL, 2006, 51 (03) :502-523
[10]   Using a multi-objective genetic algorithm for SVM construction [J].
Giustolisi, Orazio .
JOURNAL OF HYDROINFORMATICS, 2006, 8 (02) :125-139