Motives of isogenous K3 surfaces

被引:20
作者
Huybrechts, Daniel [1 ]
机构
[1] Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
K3; surfaces; derived categories; motives; Hodge conjecture; Brauer groups; twisted K3 surfaces; EQUIVALENCES;
D O I
10.4171/CMH/465
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that isogenous K3 surfaces have isomorphic Chow motives. This provides a motivic interpretation of a long standing conjecture of Safarevic which has been settled only recently by Buskin. The main step consists of a new proof of Safarevic's conjecture that circumvents the analytic parts in [2], avoiding twistor spaces and non-algebraic K3 surfaces.
引用
收藏
页码:445 / 458
页数:14
相关论文
共 21 条
[1]  
Andre Y., 2005, ASTERISQUE, V2003, P115
[2]  
Buskin N., CRELLE J REINE ANGEW
[3]   Twisted Fourier-Mukai functors [J].
Canonaco, Alberto ;
Stellari, Paolo .
ADVANCES IN MATHEMATICS, 2007, 212 (02) :484-503
[4]   Derived categories of coherent sheaves and motives of K3 surfaces [J].
Del Padrone, Alessio ;
Pedrini, Claudio .
REGULATORS, 2012, 571 :219-232
[5]   Some remarks on L-equivalence of algebraic varieties [J].
Efimov, Alexander I. .
SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (04) :3753-3762
[6]   Cremona transformations and derived equivalences of K3 surfaces [J].
Hassett, Brendan ;
Lai, Kuan-Wen .
COMPOSITIO MATHEMATICA, 2018, 154 (07) :1508-1533
[7]   Equivalences of twisted K3 surfaces [J].
Huybrechts, D ;
Stellari, P .
MATHEMATISCHE ANNALEN, 2005, 332 (04) :901-936
[8]   Motives of derived equivalent K3 surfaces [J].
Huybrechts, D. .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2018, 88 (01) :201-207
[9]   Generalized Calabi-Yau structures, K3 surfaces, and B-fields [J].
Huybrechts, D .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2005, 16 (01) :13-36
[10]  
Huybrechts D, 2016, CAMBRIDGE STUDIES AD, V158