Mo6+ activated multimetal oxygen-evolving catalysts

被引:147
作者
Liu, Peng Fei [1 ]
Yang, Shuang [1 ]
Zheng, Li Rong [4 ]
Zhang, Bo [2 ,3 ]
Yang, Hua Gui [1 ]
机构
[1] East China Univ Sci & Technol, Sch Mat Sci & Engn, Minist Educ, Key Lab Ultrafine Mat, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Dept Phys, Shanghai 200237, Peoples R China
[3] Univ Toronto, Dept Elect & Comp Engn, 35 St George St, Toronto, ON M5S 1A4, Canada
[4] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
EVOLUTION ELECTROCATALYSTS; NICKEL-HYDROXIDE; WATER; IRON; PHOSPHATE; COBALT; NANOSHEETS; SITES; FILMS;
D O I
10.1039/c6sc04819f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Water splitting is key to electrically-powered chemical fuel synthesis, but the slow kinetics of the oxygen evolution reaction (OER) hinder the wider promotion of such technology. Several first-row (3d) transition metal-based catalysts have been developed for the OER; however, these catalysts still require operating voltages that lie well above the fundamental thermodynamic potential. Here, we report high-valence metal molybdenum (Mo6+) modulated 3d metal (oxy) hydroxides. The obtained multimetal FeCoMo based OER catalysts require an overpotential of 277 mV to reach the current density of 10 mA cm(-2) on the glassy carbon electrode, and there was no evidence of degradation for about 40 hours of stability testing. The catalysts stay in their amorphous phases, potentially with atomically homogenous metal distribution. The in situ X-ray adsorption analysis unambiguously reveals the tuned electronic structures of the 3d metals owing to Mo6+, further demonstrating the modification effect of a high-valence metal for designing highly-efficient OER catalysts.
引用
收藏
页码:3484 / 3488
页数:5
相关论文
共 37 条
[1]  
[Anonymous], 2016, ANGEW CHEM INT EDIT, DOI DOI 10.1002/anie.201511032
[2]   Pulse-Electrodeposited Ni-Fe (Oxy)hydroxide Oxygen Evolution Electrocatalysts with High Geometric and Intrinsic Activities at Large Mass Loadings [J].
Batchellor, Adam S. ;
Boettcher, Shannon W. .
ACS CATALYSIS, 2015, 5 (11) :6680-6689
[3]   Cobalt-Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism [J].
Burke, Michaela S. ;
Kast, Matthew G. ;
Trotochaud, Lena ;
Smith, Adam M. ;
Boettcher, Shannon W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (10) :3638-3648
[4]   Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe4+ by Mossbauer Spectroscopy [J].
Chen, Jamie Y. C. ;
Dang, Lianna ;
Liang, Hanfeng ;
Bi, Wenli ;
Gerken, James B. ;
Jin, Song ;
Alp, E. Ercan ;
Stahl, Shannon S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (48) :15090-15093
[5]   EFFECT OF COPRECIPITATED METAL-IONS ON THE ELECTROCHEMISTRY OF NICKEL-HYDROXIDE THIN-FILMS - CYCLIC VOLTAMMETRY IN 1M KOH [J].
CORRIGAN, DA ;
BENDERT, RM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (03) :723-728
[6]   Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation [J].
Fan, Ke ;
Chen, Hong ;
Ji, Yongfei ;
Huang, Hui ;
Claesson, Per Martin ;
Daniel, Quentin ;
Philippe, Bertrand ;
Rensmo, Hakan ;
Li, Fusheng ;
Luo, Yi ;
Sun, Licheng .
NATURE COMMUNICATIONS, 2016, 7
[7]   Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting [J].
Friebel, Daniel ;
Louie, Mary W. ;
Bajdich, Michal ;
Sanwald, Kai E. ;
Cai, Yun ;
Wise, Anna M. ;
Cheng, Mu-Jeng ;
Sokaras, Dimosthenis ;
Weng, Tsu-Chien ;
Alonso-Mori, Roberto ;
Davis, Ryan C. ;
Bargar, John R. ;
Norskov, Jens K. ;
Nilsson, Anders ;
Bell, Alexis T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (03) :1305-1313
[8]   Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst [J].
Gao, Minrui ;
Sheng, Wenchao ;
Zhuang, Zhongbin ;
Fang, Qianrong ;
Gu, Shuang ;
Jiang, Jun ;
Yan, Yushan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (19) :7077-7084
[9]   Calcium molybdate octahedral nanostructures, hierarchical self-assemblies controllable synthesis by coprecipitation method: Characterization and optical properties [J].
Ghaed-Amini, Marziyeh ;
Bazarganipour, Mehdi ;
Salavati-Niasari, Masoud .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2015, 21 :1089-1097
[10]   Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts [J].
Guo, Donghui ;
Shibuya, Riku ;
Akiba, Chisato ;
Saji, Shunsuke ;
Kondo, Takahiro ;
Nakamura, Junji .
SCIENCE, 2016, 351 (6271) :361-365