Vertex-colouring edge-weightings

被引:95
作者
Addario-Berry, Louigi [1 ]
Dalal, Ketan
McDiarmid, Colin
Reed, Bruce A.
Thomason, Andrew
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ H3A 2A7, Canada
[2] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
[3] DPMMS, Ctr Math Sci, Cambridge CB3 0WB, England
关键词
05C15;
D O I
10.1007/s00493-007-0041-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A weighting w of the edges of a graph G induces a colouring of the vertices of G where the colour of vertex v, denoted c(v), is Sigma(e is an element of v) w(e). We show that the edges of every graph that does not contain a component isomorphic to K-2 can be weighted from the set {1,...,30} such that in the resulting vertex-colouring of G, for every edge (u, v) of G, c(u) not equal c(v).
引用
收藏
页码:1 / 12
页数:12
相关论文
共 11 条
[1]   Vertex colouring edge partitions [J].
Addario-Berry, L ;
Aldred, REL ;
Dalal, K ;
Reed, BA .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 94 (02) :237-244
[2]  
Aigner M., 1992, Ann. Disc. Math., V52, P1
[3]   Vertex-distinguishing edge colorings of graphs [J].
Ballister, PN ;
Riordan, OM ;
Schelp, RH .
JOURNAL OF GRAPH THEORY, 2003, 42 (02) :95-109
[4]  
Burris AC, 1997, J GRAPH THEOR, V26, P73, DOI 10.1002/(SICI)1097-0118(199710)26:2<73::AID-JGT2>3.0.CO
[5]  
2-C
[6]   The harmonious chromatic number of bounded degree graphs [J].
Edwards, K .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1997, 55 :435-447
[7]   A SIMPLE EXISTENCE CRITERION FOR (G LESS-THAN F)-FACTORS [J].
HEINRICH, K ;
HELL, P ;
KIRKPATRICK, DG ;
LIU, GZ .
DISCRETE MATHEMATICS, 1990, 85 (03) :313-317
[8]   Edge weights and vertex colours [J].
Karonski, M ;
Luczak, T ;
Thomason, A .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 91 (01) :151-157
[9]   FACTORIZATION OF GRAPHS .2. [J].
LOVASZ, L .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1972, 23 (1-2) :223-246
[10]  
Plummer M.D., 1986, Matching theory