Injectable Silk Nanofiber Hydrogels for Sustained Release of Small-Molecule Drugs and Vascularization

被引:74
作者
Ding, Zhaozhao [1 ,2 ]
Zhou, Mingliang [4 ]
Zhou, Zhengyu [3 ]
Zhang, Wenjie [4 ]
Jiang, Xinquan [4 ]
Lu, Xiaohong [1 ,2 ]
Zuo, Baoqi [1 ,2 ]
Lu, Qiang [1 ,2 ]
Kaplan, David L. [5 ]
机构
[1] Soochow Univ, Natl Engn Lab Modern Silk, Suzhou 215123, Peoples R China
[2] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215123, Peoples R China
[3] Soochow Univ, Med Coll, Lab Anim Ctr, Suzhou 215123, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Med, Dept Prosthodont,Peoples Hosp 9, Oral Bioengn & Regenerat Med Lab,Shanghai Key Lab, 639 Zhizaoju Rd, Shanghai 200011, Peoples R China
[5] Tufts Univ, Dept Biomed Engn, Medford, MA 02155 USA
基金
国家重点研发计划;
关键词
silk; desferrioxamine; drug delivery; vascularization; tissue regeneration; STEM-CELL DIFFERENTIATION; ANGIOGENESIS; SCAFFOLDS; REGENERATION; DELIVERY; GROWTH; NANOPARTICLES; BIOMATERIALS; ACTIVATION; PATHWAY;
D O I
10.1021/acsbiomaterials.9b00621
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Strategies to control neovascularization in damaged tissues remain a key issue in regenerative medicine. Unlike most reported desferrioxamine (DFO)-loaded systems where DFO demonstrates a burst release, here we attain zero-order release behavior above 40 days. This outcome was achieved by blending DFO with silk nanofibers with special hydrophilic-hydrophobic properties. The special silk nanofibers showed strong physical binding capacity with DFO, avoiding chemical cross-linking. Using these new biomaterials in vivo in a rat wound model suggested that the DFO-loaded silk nanofiber hydrogel systems stimulated angiogenesis by the sustained release of DFO, but also facilitated cell migration and tissue ingrowth. These features resulted in faster formation of a blood vessel network in the wounds, as well improved healing when compared to the free DFO system. The DFO-loaded systems are also suitable for the regeneration of other tissues, such as nerve and bone, suggesting universality in the biomedical field.
引用
收藏
页码:4077 / 4088
页数:23
相关论文
共 73 条
[61]   Compressive elasticity of three-dimensional nanofiber matrix directs mesenchymal stem cell differentiation to vascular cells with endothelial or smooth muscle cell markers [J].
Wingate, K. ;
Bonani, W. ;
Tan, Y. ;
Bryant, S. J. ;
Tan, W. .
ACTA BIOMATERIALIA, 2012, 8 (04) :1440-1449
[62]   Injectable and pH-Responsive Silk Nanofiber Hydrogels for Sustained Anticancer Drug Delivery [J].
Wu, Hongchun ;
Liu, Shanshan ;
Xiao, Liying ;
Dong, Xiaodan ;
Lu, Qiang ;
Kaplan, David L. .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (27) :17118-17126
[63]   Comparative Study of Heparin-Poloxamer Hydrogel Modified bFGF and aFGF for in Vivo Wound Healing Efficiency [J].
Wu, Jiang ;
Zhu, Jingjing ;
He, Chaochao ;
Xiao, Zecong ;
Ye, Jingjing ;
Li, Yi ;
Chen, Anqi ;
Zhang, Hongyu ;
Li, Xiaokun ;
Lin, Li ;
Zhao, Yingzheng ;
Zheng, Jie ;
Xiao, Jian .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (29) :18710-18721
[64]   Heparin-Based Coacervate of FGF2 Improves Dermal Regeneration by Asserting a Synergistic Role with Cell Proliferation and Endogenous Facilitated VEGF for Cutaneous Wound Healing [J].
Wu, Jiang ;
Ye, Jingjing ;
Zhu, Jingjing ;
Xiao, Zecong ;
He, Chaochao ;
Shi, Hongxue ;
Wang, Yadong ;
Ling, Cai ;
Zhang, Hongyu ;
Zhao, Yingzheng ;
Fu, Xiaobing ;
Chen, Hong ;
Li, Xiaokun ;
Li, Lin ;
Zheng, Jie ;
Xiao, Jian .
BIOMACROMOLECULES, 2016, 17 (06) :2168-2177
[65]   Liposomes with Silk Fibroin Hydrogel Core to Stabilize bFGF and Promote the Wound Healing of Mice with Deep Second-Degree Scald [J].
Xu, He-Lin ;
Chen, Pian-Pian ;
ZhuGe, De-Li ;
Zhu, Qun-Yan ;
Jin, Bing-Hui ;
Shen, Bi-Xin ;
Xiao, Jian ;
Zhao, Ying-Zheng .
ADVANCED HEALTHCARE MATERIALS, 2017, 6 (19)
[66]   Melanin nanoparticles as an endogenous agent for efficient iron overload therapy [J].
Yan, Junjie ;
Ji, Yu ;
Zhang, Pengjun ;
Lu, Xiaomei ;
Fan, Quli ;
Pan, Donghui ;
Yang, Runlin ;
Xu, Yuping ;
Wang, Lizhen ;
Zhang, Lei ;
Yang, Min .
JOURNAL OF MATERIALS CHEMISTRY B, 2016, 4 (45) :7233-7240
[67]   Vascularized 3D printed scaffolds for promoting bone regeneration [J].
Yan, Yufei ;
Chen, Hao ;
Zhang, Hongbo ;
Guo, Changjun ;
Yang, Kai ;
Chen, Kaizhe ;
Cheng, Ruoyu ;
Qian, Niandong ;
Sandler, Niklas ;
Zhang, Yu Shrike ;
Shen, Haokai ;
Qi, Jin ;
Cui, Wenguo ;
Deng, Lianfu .
BIOMATERIALS, 2019, 190 :97-110
[68]   Mesoporous silicate nanoparticles/3D nanofibrous scaffold-mediated dual-drug delivery for bone tissue engineering [J].
Yao, Qingqing ;
Liu, Yangxi ;
Selvaratnam, Balaranjan ;
Koodali, Ranjit T. ;
Sun, Hongli .
JOURNAL OF CONTROLLED RELEASE, 2018, 279 :69-78
[69]   Hypoxia-Mimicking Nanofibrous Scaffolds Promote Endogenous Bone Regeneration [J].
Yao, Qingqing ;
Liu, Yangxi ;
Tao, Jianning ;
Baumgarten, Keith M. ;
Sun, Hongli .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (47) :32450-32459
[70]   Targeted Brain Delivery of Rabies Virus Glycoprotein 29-Modified Deferoxamine-Loaded Nanoparticles Reverses Functional Deficits in Parkinsonian Mice [J].
You, Linhao ;
Wang, Jing ;
Liu, Tianqing ;
Zhang, Yinlong ;
Han, Xuexiang ;
Wang, Ting ;
Guo, Shanshan ;
Dong, Tianyu ;
Xu, Junchao ;
Anderson, Gregory J. ;
Liu, Qiang ;
Chang, Yan-Zhong ;
Lou, Xin ;
Nie, Guangjun .
ACS NANO, 2018, 12 (05) :4123-4139