Waste- and Cd-Free Inkjet-Printed Zn(O,S) Buffer for Cu(In,Ga)(S,Se)2 Thin-Film Solar Cells

被引:23
作者
Chu, Van Ben [1 ]
Siopa, Daniel [1 ]
Debot, Alice [1 ]
Adeleye, Damilola [1 ]
Sood, Mohit [1 ]
Lomuscio, Alberto [1 ]
Melchiorre, Michele [1 ]
Guillot, Jerome [2 ]
Valle, Nathalie [2 ]
El Adib, Brahime [2 ]
Rommelfangen, Jonathan [1 ]
Dale, Phillip J. [1 ]
机构
[1] Univ Luxembourg, Dept Phys & Mat Sci, L-4422 Belvaux, Luxembourg
[2] Luxembourg Inst Sci & Technol, Mat Res & Technol Dept, L-4422 Belvaux, Luxembourg
关键词
inkjet printing; Zn(O; S); buffer; thin film; CIGS solar cells; UV ozone; drop spacing; LAYER; ZNS; DEPOSITION; DECOMPOSITION; TEMPERATURE; PERFORMANCE; PARAMETER; PRECURSOR; THIOUREA; CU(IN;
D O I
10.1021/acsami.0c16860
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Thin film semiconductors grown using chemical bath methods produce large amounts of waste solvent and chemicals that then require costly waste processing. We replace the toxic chemical bath deposited CdS buffer layer from our Cu(In,Ga)(S,Se)(2) (CIGS)-based solar cells with a benign inkjet-printed and annealed Zn(O,S) layer using 230 000 times less solvent and 64 000 times less chemicals. The wetting and final thickness of the Zn(O,S) layer on the CIGS is controlled by a UV ozone treatment and the drop spacing, whereas the annealing temperature and atmosphere determine the final chemical composition and band gap. The best solar cell using a Zn(O,S) air-annealed layer had an efficiency of 11%, which is similar to the best conventional CdS buffer layer device fabricated in the same batch. Improving the Zn(O,S) wetting and annealing conditions resulted in the best device efficiency of 13.5%, showing the potential of this method.
引用
收藏
页码:13009 / 13021
页数:13
相关论文
共 69 条
[1]   Structural and chemical investigations of CBD- and PVD-CdS buffer layers and interfaces in Cu(In,Ga)Se2-based thin film solar cells [J].
Abou-Ras, D ;
Kostorz, G ;
Romeo, A ;
Rudmann, D ;
Tiwari, A .
THIN SOLID FILMS, 2005, 480 :118-123
[2]   Deposition and characterization of cadmium sulfide (CdS) by chemical bath deposition using an alternative chemistry cadmium precursor [J].
Alexander, J. Nicholas ;
Higashiya, Seiichiro ;
Caskey, Douglas, Jr. ;
Efstathiadis, Harry ;
Haldar, Pradeep .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 125 :47-53
[3]   The Optical Diode Ideality Factor Enables Fast Screening of Semiconductors for Solar Cells [J].
Babbe, Finn ;
Choubrac, Leo ;
Siebentritt, Susanne .
SOLAR RRL, 2018, 2 (12)
[4]   Ag diffusion in ZnS thin films prepared by spray pyrolysis [J].
Bacaksiz, E. ;
Gorur, O. ;
Tomakin, A. ;
Yanmaz, E. ;
Altunbas, A. .
MATERIALS LETTERS, 2007, 61 (30) :5239-5242
[5]   Ordered Nanoscale Heterojunction Architecture for Enhanced Solution-Based CuInGaS2 Thin Film Solar Cell Performance [J].
Barange, Nilesh ;
Chu, Van Ben ;
Nam, Minwoo ;
Ahn, In-Hwan ;
Kim, Young Dong ;
Han, Il Ki ;
Min, Byoung Koun ;
Ko, Doo-Hyun .
ADVANCED ENERGY MATERIALS, 2016, 6 (24)
[6]   High efficiency thin-film CuIn1-xGaxSe2 photovoltaic cells using a Cd1-xZnxS buffer layer [J].
Bhattacharya, R. N. ;
Contreras, M. A. ;
Egaas, B. ;
Noufi, R. N. ;
Kanevce, A. ;
Sites, J. R. .
APPLIED PHYSICS LETTERS, 2006, 89 (25)
[7]   Sol-gel synthesis of ZnS (O,OH) thin films: Influence of precursor and process temperature on its optoelectronic properties [J].
Bu, Ian Y. Y. .
JOURNAL OF LUMINESCENCE, 2013, 134 :423-428
[8]   Reactively sputtered Zn(O,S) buffer layers for controlling band alignment of Cu(In,Ga)Se2 thin-film solar cell interface [J].
Cho, Dae-Hyung ;
Lee, Woo-Jung ;
Kim, Myeong Eon ;
Kim, Kihwan ;
Yun, Jae Ho ;
Chung, Yong-Duck .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 842
[9]   AUGER PARAMETER MEASUREMENTS OF ZINC-COMPOUNDS RELEVANT TO ZINC TRANSPORT IN THE ENVIRONMENT [J].
DAKE, LS ;
BAER, DR ;
ZACHARA, JM .
SURFACE AND INTERFACE ANALYSIS, 1989, 14 (1-2) :71-75
[10]   Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution [J].
Derby, Brian .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 40, 2010, 40 :395-414