Clustering Techniques Performance Analysis for a Solar Thermal Collector Hybrid Model Implementation

被引:0
|
作者
Teresa Garcia-Ordas, Maria [1 ]
Alaiz-Moreton, Hector [1 ]
Casteleiro-Roca, Jose-Luis [2 ]
Jove, Esteban [2 ]
Benitez Andrades, Jose Alberto [1 ]
Benavides Cuellar, Carmen [1 ]
Quintian, Hector [2 ]
Luis Calvo-Rolle, Jose [2 ]
机构
[1] Univ Leon, Dept Elect & Syst Engn, Escuela Ingn, Campus Vegazana, Leon 24071, Spain
[2] Univ A Coruna, Dept Ind Engn, CITIC, CTC, Avda 19 Febrero S-N, Ferrol 15405, A Coruna, Spain
来源
HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, HAIS 2020 | 2020年 / 12344卷
关键词
Clustering; Prediction; Regression; Solar thermal panel; Hybrid model; PREDICTION; SYSTEM;
D O I
10.1007/978-3-030-61705-9_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work addresses the performance comparison of clustering techniques in order to achieve robust hybrid models. With this goal, three different clustering techniques have been tested. The experimental environment designed for this purpose is based on a real case study, a thermal solar generation system installed in a bio-climate house located in Sotavento Experimental Wind Farm, in Xermade (Lugo) in Galicia (Spain). In this way, clustering methods have been applied over the real dataset extracted from the thermal solar generation installation. For comparing the quality of each clustering technique, two approaches have been used. The first one is oriented to a set of three unsupervised learning metrics (Silhouette, Calinski-Harabasz, and Davies-Bouldin), while the second one is based on error measurements associated with a regression method such as Multi-Layer Perceptron.
引用
收藏
页码:329 / 340
页数:12
相关论文
共 50 条
  • [21] Effect of Different Rib Shapes on the Performance of Solar Thermal Collector
    Fazal, Rehan
    Mohan, Ravindra
    Goga, Geetesh
    Kumar, Santosh
    Yadav, Anil Singh
    Chakroborty, Subhendu
    2ND INTERNATIONAL CONFERENCE ON SMART SUSTAINABLE MATERIALS AND TECHNOLOGIES, VOL 1, ICSSMT 2023, 2024, : 179 - 188
  • [22] Comparisons of novel modeling techniques to analyze thermal performance of unglazed transpired solar collectors
    Erenturk, Saliha
    Erenturk, Koksal
    MEASUREMENT, 2018, 116 : 412 - 421
  • [23] Using ANN techniques to forecast thermal performance of a vacuum tube solar collector filled with SiO2/EG-water nanofluid
    Abidi, Awatef
    Khdair, Adnan, I
    Kalbasi, Rasool
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2021, 128 : 301 - 313
  • [24] Numerical modeling and experimental cross-validation of a solar thermal collector through an innovative hybrid CFD model
    Nokhosteen, Arman
    Sobhansarbandi, Sarvenaz
    RENEWABLE ENERGY, 2021, 172 : 918 - 928
  • [25] Thermal Performance Enhancement in Flat Plate Solar Collector Solar Water Heater: A Review
    Azha, Nurril Ikmal Shamsul
    Hussin, Hilmi
    Nasif, Mohammad Shakir
    Hussain, Tanweer
    PROCESSES, 2020, 8 (07)
  • [26] Performance Analysis of a Clustering Model for QoS-Aware Service Recommendation
    Ding, Fei
    Wen, Tao
    Ren, Suju
    Bao, Jianmin
    ELECTRONICS, 2020, 9 (05)
  • [27] THERMAL AND EXERGETIC INVESTIGATION OF A SOLAR DISH COLLECTOR OPERATING WITH MONO AND HYBRID NANOFLUIDS
    Pavlovic, Sasa R.
    Bellos, Evangelos
    Stefanovic, Velimir P.
    Djordjevic, Milan M.
    Vasiljevic, Darko M.
    THERMAL SCIENCE, 2018, 22 : S1383 - S1393
  • [28] Modeling and detailed study of hybrid photovoltaic thermal (PV/T) solar collector
    Khelifa, A.
    Touafek, K.
    Ben Moussa, H.
    Tabet, I.
    SOLAR ENERGY, 2016, 135 : 169 - 176
  • [29] Regression analysis to design a solar thermal collector for occasional use
    Ciulla, G.
    D'Amico, A.
    Lo Brano, V
    Buscemi, A.
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2020, 37 (37)
  • [30] Performance investigation of solar thermal collector with auxiliary heater for space heating
    Biglarian, Hassan
    Sharfabadi, Mohammad Mazidi
    Alizadeh, Mansour
    Gharaei, Hossein
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2021, 28 (11) : 3466 - 3476