Influence of alkali metal amides on the catalytic activity of manganese nitride for ammonia decomposition

被引:33
作者
Chang, Fei [1 ,2 ]
Guo, Jianping [1 ]
Wu, Guotao [1 ]
Wang, Peikun [1 ,2 ]
Yu, Pei [1 ,2 ]
Chen, Ping [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian 116023, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
[4] Collaborat Innovat Ctr Chem Energy Mat, Dalian 116023, Peoples R China
关键词
Alkali metal amide; Manganese nitride; Electronic promotion; Ammonia decomposition; COX-FREE HYDROGEN; NH3; DECOMPOSITION; HETEROGENEOUS CATALYSIS; BIMETALLIC CATALYSTS; LITHIUM IMIDE; SODIUM AMIDE; RU; GENERATION; PROMOTER; KINETICS;
D O I
10.1016/j.cattod.2016.09.010
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Strong promoting effect of alkali metal amides, i.e., LiNH2, NaNH2 and KNH2, on the catalytic activity of manganese nitride (MnN) for ammonia decomposition has been demonstrated, which is evidenced by ca. 100 K drop in onset temperature and by ca. 50-60 kJ mol(-1) reduction in apparent activation energy as compared with the neat MnN. The order of promotion capability of alkali metal amides can be ranked as LiNH2 > KNH2 >= NaNH2, either in term of NH3 conversion rate or turnover frequency (TOF), which is distinctly different from that of conventional alkali metal oxides or hydroxides, i.e., K > Na > Li. This phenomenon suggests that the promoting mechanism of alkalis depends on their chemical forms. When alkalis are in the form of amide or imide, they may function as co-catalysts by participating in the catalytic circle directly rather than by executing electronic promotion influence on transition metals. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:141 / 146
页数:6
相关论文
共 40 条
[21]   Ammonia for hydrogen storage: challenges and opportunities [J].
Klerke, Asbjorn ;
Christensen, Claus Hviid ;
Norskov, Jens K. ;
Vegge, Tejs .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (20) :2304-2310
[22]   MAGNETIC-STRUCTURE OF ETA-MN3N2 [J].
KREINER, G ;
JACOBS, H .
JOURNAL OF ALLOYS AND COMPOUNDS, 1992, 183 :345-362
[23]   Catalytic ammonia decomposition over CMK-3 supported Ru catalysts: Effects of surface treatments of supports [J].
Li, L. ;
Zhu, Z. H. ;
Lu, G. Q. ;
Yan, Z. F. ;
Qiao, S. Z. .
CARBON, 2007, 45 (01) :11-20
[24]   Catalytic decomposition of ammonia over nitrided MoNx/α-Al2O3 and NiMoNy/α-Al2O3 catalysts [J].
Liang, CH ;
Li, WZ ;
Wei, ZB ;
Xin, Q ;
Li, C .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2000, 39 (10) :3694-3697
[25]   ENERGIES OF ACTIVATION FOR DECOMPOSITION OF AMMONIA CATALYSED BY THE NITRIDES OF THE 4TH SERIES TRANSITION ELEMENTS [J].
LOTZ, CR ;
SEBBA, F .
TRANSACTIONS OF THE FARADAY SOCIETY, 1957, 53 (09) :1246-1252
[26]   Ammonia decomposition catalysis using non-stoichiometric lithium imide [J].
Makepeace, Joshua W. ;
Wood, Thomas J. ;
Hunter, Hazel M. A. ;
Jones, Martin O. ;
David, William I. F. .
CHEMICAL SCIENCE, 2015, 6 (07) :3805-3815
[27]   From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis [J].
Medford, Andrew J. ;
Vojvodic, Aleksandra ;
Hummelshoj, Jens S. ;
Voss, Johannes ;
Abild-Pedersen, Frank ;
Studt, Felix ;
Bligaard, Thomas ;
Nilsson, Anders ;
Norskov, Jens K. .
JOURNAL OF CATALYSIS, 2015, 328 :36-42
[28]   Alkali promotion of N2 dissociation over Ru(0001) [J].
Mortensen, JJ ;
Hammer, B ;
Norskov, JK .
PHYSICAL REVIEW LETTERS, 1998, 80 (19) :4333-4336
[29]   Influence of basic dopants on the activity of Ru/Pr6O11 for hydrogen production by ammonia decomposition [J].
Nagaoka, Katsutoshi ;
Eboshi, Takaaki ;
Abe, Naruhiko ;
Miyahara, Shin-ichiro ;
Honda, Kyoko ;
Sato, Katsutoshi .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (35) :20731-20735
[30]   KINETICS OF AMMONIA DECOMPOSITION ON VANADIUM NITRIDE [J].
OYAMA, ST .
JOURNAL OF CATALYSIS, 1992, 133 (02) :358-369