Fully Convolutional Network Method of Semantic Segmentation of Class Imbalance Remote Sensing Images

被引:0
作者
Wu Zhihuan [1 ,2 ]
Gao Yongming [3 ]
Li Lei [4 ]
Xue Junshi [1 ]
机构
[1] Space Engn Univ, Grad Sch, Beijing 101416, Peoples R China
[2] 63883 Troops, Luoyang 471000, Henan, Peoples R China
[3] Space Engn Univ, Sch Space Informat, Beijing 101416, Peoples R China
[4] Space Engn Univ, Dept Elect & Opt Engn, Beijing 101416, Peoples R China
关键词
image processing; remote sensing images; semantic segmentation; class imbalance; fully convolutional network; deep learning; CLASSIFICATION;
D O I
暂无
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A fully convolutional network (FCN) model based on U-Net is proposed to implement the semantic segmentation of remote sensing images with high resolution, in which the data standardization and data augmentation arc adopted for data preprocessing. In addition, the Adam optimizer is used for the model training and the average Jaccard index is used as the evaluation metric. A weighted cross entropy loss function and an adaptive threshold algorithm arc employed to improve the classification accuracy of small classes. The experimental results on the DSTI, dataset show that the proposed method can increase the average Jaccard index of prediction results from 0.611 to 0.636, and produces an accurate end-to-end classification for high-resolution remote sensing images.
引用
收藏
页数:12
相关论文
共 37 条
  • [1] Amin HH, 2017, INT CONF UBIQ FUTUR, P1
  • [2] Geostatistical classification for remote sensing: an introduction
    Atkinson, PM
    Lewis, P
    [J]. COMPUTERS & GEOSCIENCES, 2000, 26 (04) : 361 - 371
  • [3] SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
    Badrinarayanan, Vijay
    Kendall, Alex
    Cipolla, Roberto
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2481 - 2495
  • [4] MULTISPECTRAL CLASSIFICATION OF LANDSAT-IMAGES USING NEURAL NETWORKS
    BISCHOF, H
    SCHNEIDER, W
    PINZ, AJ
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1992, 30 (03): : 482 - 490
  • [5] [蔡强 Cai Qiang], 2017, [光学精密工程, Optics and Precision Engineering], V25, P772
  • [6] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [7] Chen X., 2011, RELATIONSHIPS EVALUA
  • [8] Decatur S. E., 1989, IJCNN: International Joint Conference on Neural Networks (Cat. No.89CH2765-6), P283, DOI 10.1109/IJCNN.1989.118592
  • [9] Gao XJ, 2017, ACTA OPT SINICA, V37
  • [10] A survey on deep learning techniques for image and video semantic segmentation
    Garcia-Garcia, Alberto
    Orts-Escolano, Sergio
    Oprea, Sergiu
    Villena-Martinez, Victor
    Martinez-Gonzalez, Pablo
    Garcia-Rodriguez, Jose
    [J]. APPLIED SOFT COMPUTING, 2018, 70 : 41 - 65