Error estimate of Gauge-Uzawa methods for incompressible flows with variable density

被引:16
作者
Chen, Hongtao [1 ,2 ]
Mao, Jingjing [1 ,2 ]
Shen, Jie [1 ,2 ,3 ]
机构
[1] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
[3] Purdue Univ, Dept Math, W Lafayette, IN 47906 USA
基金
中国国家自然科学基金;
关键词
Gauge-Uzawa method; Variable density; Error estimates; Finite element method; Stability; MIXED FINITE-ELEMENTS;
D O I
10.1016/j.cam.2019.06.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct a positivity-preserving Gauge-Uzawa method for the semi-discrete-in-time scheme of incompressible viscous flows with variable density, and establish its stability and error estimates. We also construct and implement a fully discrete scheme with finite elements in space and derive its positivity-preserving and stability result. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 16 条
[1]   FINITE ELEMENT EXTERIOR CALCULUS FROM HODGE THEORY TO NUMERICAL STABILITY [J].
Arnold, Douglas N. ;
Falk, Richard S. ;
Winther, Ragnar .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 47 (02) :281-354
[2]   2 FAMILIES OF MIXED FINITE-ELEMENTS FOR 2ND ORDER ELLIPTIC PROBLEMS [J].
BREZZI, F ;
DOUGLAS, J ;
MARINI, LD .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :217-235
[3]   NUMERICAL SOLUTION OF NAVIER-STOKES EQUATIONS [J].
CHORIN, AJ .
MATHEMATICS OF COMPUTATION, 1968, 22 (104) :745-&
[4]  
GIRAULT V., 2012, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, V5
[5]   An overview of projection methods for incompressible flows [J].
Guermond, J. L. ;
Minev, P. ;
Shen, Jie .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (44-47) :6011-6045
[6]   ERROR ANALYSIS OF A FRACTIONAL TIME-STEPPING TECHNIQUE FOR INCOMPRESSIBLE FLOWS WITH VARIABLE DENSITY [J].
Guermond, J. -L. ;
Salgado, Abner J. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (03) :917-944
[7]   A projection FEM for variable density incompressible flows [J].
Guermond, JL ;
Quartapelle, L .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 165 (01) :167-188
[8]   MIXED FINITE-ELEMENTS IN IR3 [J].
NEDELEC, JC .
NUMERISCHE MATHEMATIK, 1980, 35 (03) :315-341
[9]   A NEW FAMILY OF MIXED FINITE-ELEMENTS IN R3 [J].
NEDELEC, JC .
NUMERISCHE MATHEMATIK, 1986, 50 (01) :57-81
[10]   The gauge-Uzawa finite element method. Part I: The Navier-Stokes equations [J].
Nochetto, RH ;
Pyo, JH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (03) :1043-1068