Reservoir engineering using quantum optimal control for qubit reset

被引:27
作者
Basilewitsch, Daniel [1 ]
Cosco, Francesco [2 ,7 ,8 ]
Lo Gullo, Nicolino [2 ]
Mottonen, Mikko [3 ,4 ]
Ala-Nissila, Tapio [3 ,5 ,6 ]
Koch, Christiane P. [1 ]
Maniscalco, Sabrina [2 ,3 ]
机构
[1] Univ Kassel, Theoret Phys, D-34132 Kassel, Germany
[2] Univ Turku, Dept Phys & Astron, Turku Ctr Quantum Phys, QTF Ctr Excellence, FI-20014 Turku, Finland
[3] Aalto Univ, Dept Appl Phys, QTF Ctr Excellence, FI-00076 Aalto, Finland
[4] VTT Tech Res Ctr Finland, POB 1000, FI-02044 Espoo, Finland
[5] Loughborough Univ, Interdisciplinary Ctr Math Modelling, Loughborough LE11 3TU, Leics, England
[6] Loughborough Univ, Dept Math Sci, Loughborough LE11 3TU, Leics, England
[7] Univ Ulm, Inst Theoret Phys, D-89069 Ulm, Germany
[8] Univ Ulm, IQST, D-89069 Ulm, Germany
基金
美国国家科学基金会; 欧洲研究理事会; 芬兰科学院;
关键词
quantum optimal control; qubit initialization; time-local master equation with time-dependent decay; quantum reservoir engineering; circuit QED; INTERNAL DEGREES; STATE; NOISE;
D O I
10.1088/1367-2630/ab41ad
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We determine how to optimally reset a superconducting qubit which interacts with a thermal environment in such a way that the coupling strength is tunable. Describing the system in terms of a time-local master equation with time-dependent decay rates and using quantum optimal control theory, we identify temporal shapes of tunable level splittings which maximize the efficiency of the reset protocol in terms of duration and error. Time-dependent level splittings imply a modification of the system-environment coupling, varying the decay rates as well as the Lindblad operators. Our approach thus demonstrates efficient reservoir engineering employing quantum optimal control. We find the optimized reset strategy to consist in maximizing the decay rate from one state and driving non-adiabatic population transfer into this strongly decaying state.
引用
收藏
页数:12
相关论文
共 47 条
[1]   MARKOV MASTER EQUATIONS AND FERMI GOLDEN RULE [J].
ALICKI, R .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1977, 16 (05) :351-355
[2]   Laser cooling of internal degrees of freedom .2. [J].
Bartana, A ;
Kosloff, R ;
Tannor, DJ .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (04) :1435-1448
[3]   LASER COOLING OF MOLECULAR INTERNAL DEGREES OF FREEDOM BY A SERIES OF SHAPED PULSES [J].
BARTANA, A ;
KOSLOFF, R ;
TANNOR, DJ .
JOURNAL OF CHEMICAL PHYSICS, 1993, 99 (01) :196-210
[4]   Beating the limits with initial correlations [J].
Basilewitsch, Daniel ;
Schmidt, Rebecca ;
Sugny, Dominique ;
Maniscalco, Sabrina ;
Koch, Christiane P. .
NEW JOURNAL OF PHYSICS, 2017, 19
[5]   Resonator reset in circuit QED by optimal control for large open quantum systems [J].
Boutin, Samuel ;
Andersen, Christian Kraglund ;
Venkatraman, Jayameenakshi ;
Ferris, Andrew J. ;
Blais, Alexandre .
PHYSICAL REVIEW A, 2017, 96 (04)
[6]  
Breuer H.-P., 2002, The Theory of Open Quantum Systems
[7]   Chopped random-basis quantum optimization [J].
Caneva, Tommaso ;
Calarco, Tommaso ;
Montangero, Simone .
PHYSICAL REVIEW A, 2011, 84 (02)
[8]   Introduction to quantum noise, measurement, and amplification [J].
Clerk, A. A. ;
Devoret, M. H. ;
Girvin, S. M. ;
Marquardt, Florian ;
Schoelkopf, R. J. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (02) :1155-1208
[9]  
Doucet E, 2018, ARXIV181003631
[10]   Time-optimal control of the purification of a qubit in contact with a structured environment [J].
Fischer, J. ;
Basilewitsch, D. ;
Koch, C. P. ;
Sugny, D. .
PHYSICAL REVIEW A, 2019, 99 (03)