Bioprospecting Plant Growth-Promoting Rhizobacteria That Mitigate Drought Stress in Grasses

被引:128
|
作者
Jochum, Michael D. [1 ]
McWilliams, Kelsey L. [1 ]
Borrego, Eli J. [1 ,2 ]
Kolomiets, Mike, V [1 ]
Niu, Genhua [3 ]
Pierson, Elizabeth A. [1 ,4 ]
Jo, Young-Ki [1 ]
机构
[1] Texas A&M Univ, Dept Plant Pathol & Microbiol, College Stn, TX 77843 USA
[2] Rochester Inst Technol, Thomas H Gosnell Sch Life Sci, Rochester, NY 14623 USA
[3] Texas A&M AgriLife Res & Extens Ctr, El Paso, TX USA
[4] Texas A&M Univ, Dept Hort Sci, College Stn, TX 77843 USA
基金
美国国家科学基金会; 美国农业部;
关键词
PGPR; drought; bioprospecting; plant; growth-promoting; rhizobacteria; wheat; MICROBE INTERACTIONS; CONFER RESISTANCE; ABIOTIC STRESS; TOLERANCE; BACTERIA; ACID; MICROORGANISMS; SPECIFICITY; MECHANISMS; ROOTS;
D O I
10.3389/fmicb.2019.02106
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
This study reports the application of a novel bioprospecting procedure designed to screen plant growth-promoting rhizobacteria (PGPR) capable of rapidly colonizing the rhizosphere and mitigating drought stress in multiple hosts. Two PGPR strains were isolated by this bioprospecting screening assay and identified as Bacillus sp. (12D6) and Enterobacter sp. (16i). When inoculated into the rhizospheres of wheat (Triticum aestivum) and maize (Zea mays) seedlings, these PGPR resulted in delays in the onset of plant drought symptoms. The plant phenotype responding to drought stress was associated with alterations in root system architecture. In wheat, both PGPR isolates significantly increased root branching, and Bacillus sp. (12D6), in particular, increased root length, when compared to the control. In maize, both PGPR isolates significantly increased root length, root surface area and number of tips when compared to the control. Enterobacter sp. (16i) exhibited greater effects in root length, diameter and branching when compared to Bacillus sp. (12D6) or the control. In vitro phytohormone profiling of PGPR pellets and filtrates using LC/MS demonstrated that both PGPR strains produced and excreted indole-3-acetic acid (IAA) and salicylic acid (SA) when compared to other phytohormones. The positive effects of PGPR inoculation occurred concurrently with the onset of water deficit, demonstrating the potential of the PGPR identified from this bioprospecting pipeline for use in crop production systems under drought stress.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Influence of Plant Growth-Promoting Rhizobacteria on Corn Growth under Drought Stress
    Lin, Yaru
    Watts, Dexter B.
    Kloepper, Joseph W.
    Feng, Yucheng
    Torbert, H. Allen
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2020, 51 (02) : 250 - 264
  • [2] Plant Growth-Promoting Rhizobacteria Eliminate the Effect of Drought Stress in Plants: A Review
    Ahmad, Hafiz Muhammad
    Fiaz, Sajid
    Hafeez, Sumaira
    Zahra, Sadaf
    Shah, Adnan Noor
    Gul, Bushra
    Aziz, Omar
    Mahmood-Ur-Rahman, Ali
    Fakhar, Ali
    Rafique, Mazhar
    Chen, Yinglong
    Yang, Seung Hwan
    Wang, Xiukang
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [3] Employing plant growth-promoting rhizobacteria for abiotic stress mitigation in plants: with a focus on drought stress
    Chattaraj, Sourav
    Samantaray, Aurodeepa
    Ganguly, Arindam
    Thatoi, Hrudayanath
    DISCOVER APPLIED SCIENCES, 2025, 7 (01)
  • [4] Alleviation of Drought Stress by Plant Growth-Promoting Rhizobacteria (PGPR) in Crop Plants: A Review
    Harkhani, Khyati
    Sharma, Anish Kumar
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2024, 55 (05) : 735 - 758
  • [5] Plant Growth-Promoting Rhizobacteria (PGPR): A Rampart against the Adverse Effects of Drought Stress
    Bouremani, Naoual
    Cherif-Silini, Hafsa
    Silini, Allaoua
    Bouket, Ali Chenari
    Luptakova, Lenka
    Alenezi, Faizah N. N.
    Baranov, Oleg
    Belbahri, Lassaad
    WATER, 2023, 15 (03)
  • [6] Amelioration of drought stress in wheat by using plant growth-promoting rhizobacteria and biogas slurry
    Saleem, A.
    Raza, M. A. S.
    Khan, I. H.
    Tahir, M. A.
    Iqbal, R.
    Aslam, M. U.
    Ejaz, Z.
    Ditta, A.
    Almunqedhi, B. M.
    Farraj, D. A. Al
    GLOBAL NEST JOURNAL, 2024, 26 (08):
  • [7] Identification of Plant Growth-promoting Rhizobacteria with the Ability to Alleviate Drought Stress in Floriculture Crops
    Nordstedt, Nathan P.
    Jones, Michelle L.
    Taylor, Christopher G.
    HORTSCIENCE, 2018, 53 (09) : S187 - S188
  • [8] Effects of Plant Growth-Promoting Rhizobacteria on the Physioecological Characteristics and Growth of Walnut Seedlings under Drought Stress
    Liu, Fangchun
    Ma, Hailin
    Liu, Binghua
    Du, Zhenyu
    Ma, Bingyao
    Jing, Dawei
    AGRONOMY-BASEL, 2023, 13 (02):
  • [9] Bioprospecting rhizobacteria to improve drought resistance in grasses
    Jochum, M.
    Gaire, S. P.
    Niu, G.
    Jo, Y. K.
    PHYTOPATHOLOGY, 2017, 107 (12) : 2 - 2
  • [10] Plant growth-promoting rhizobacteria improve drought tolerance of crops: a review
    Liu, Kewei
    Deng, Fenglin
    Zeng, Fanrong
    Chen, Zhong-Hua
    Qin, Yuan
    Chen, Guang
    PLANT GROWTH REGULATION, 2025,