THE REGULARITY OF INVERSES TO SOBOLEV MAPPINGS AND THE THEORY OF HOMEOMORPHISMS

被引:0
作者
Vodopyanov, S. K. [1 ]
机构
[1] Sobolev Inst Math, Novosibirsk, Russia
关键词
quasiconformal analysis; Sobolev space; composition operator; capacity estimate; QUASI-CONFORMAL MAPPINGS; CARNOT GROUPS; ANALYTIC PROPERTIES; ADMISSIBLE CHANGES; SPATIAL MAPPINGS; SPACES; ISOMORPHISMS; DIFFERENTIABILITY; VARIABLES; CAPACITY;
D O I
10.1134/S0037446620060051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that each homeomorphism phi : D -> D' of Euclidean domains in R-n, n >= 2, belonging to the Sobolev class W-p,loc(1) (D), where p is an element of [1, infinity), and having finite distortion induces a bounded composition operator from the weighted Sobolev space L-p(1)(D'; omega) into L-p(1)(D) for some weight function omega : D -> (0, infinity). This implies that in the cases p > n-1 and n >= 3 as well as p >= 1 and n >= 2 the inverse phi(-1) : D' -> D belongs to the Sobolev class W-1,loc(1)(D'), has finite distortion, and is differentiable H-n-almost everywhere in D'. We apply this result to Q(q,p)-homeomorphisms; the method of proof also works for homeomorphisms of Carnot groups. Moreover, we prove that the class of Q(q,p)-homeomorphisms is completely determined by the controlled variation of the capacity of cubical condensers whose shells are concentric cubes.
引用
收藏
页码:1002 / 1038
页数:37
相关论文
共 75 条
[51]   Regularity of mappings inverse to Sobolev mappings [J].
Vodop'yanov, S. K. .
SBORNIK MATHEMATICS, 2012, 203 (10) :1383-1410
[52]  
Vodop'yanov S.K., 1988, Taylor Formula and Function Spaces
[53]   Differentiability of maps of Carnot groups of Sobolev classes [J].
Vodop'yanov, SK .
SBORNIK MATHEMATICS, 2003, 194 (5-6) :857-877
[54]   Sobolev spaces and (P,Q)-quasiconformal mappings of carnot groups [J].
Vodop'yanov, SK ;
Ukhlov, AD .
SIBERIAN MATHEMATICAL JOURNAL, 1998, 39 (04) :665-682
[55]  
Vodop'yanov SK, 2002, DOKL MATH, V66, P253
[56]  
Vodopyanov, 2020, COMPLEX VARIABLES EL, V65, DOI [10.1080/17476933.2020.1825396, DOI 10.1080/17476933.2020.1825396]
[57]   Functional and analytic properties of a class of mappings in quasi-conformal analysis [J].
Vodopyanov, S. K. ;
Tomilov, A. O. .
IZVESTIYA MATHEMATICS, 2021, 85 (05) :883-931
[58]  
[Водопьянов С. К. Vodopyanov S. K.], 2020, [Доклады Российской академии наук. Математика, информатика, процессы управления, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniya, Doklady Rossijskoi akademii nauk. Matematika, informatika, processy upravleniya], V494, P21, DOI 10.31857/S268695432005046X
[59]   Isomorphisms of Sobolev Spaces on Riemannian Manifolds and Quasiconformal Mappings [J].
Vodopyanov, S. K. .
SIBERIAN MATHEMATICAL JOURNAL, 2019, 60 (05) :774-804
[60]  
[Водопьянов С.К. Vodopyanov S.K.], 2019, [Доклады Академии наук, Doklady Akademii nauk], V484, P142, DOI 10.31857/S0869-56524842142-146