THE REGULARITY OF INVERSES TO SOBOLEV MAPPINGS AND THE THEORY OF HOMEOMORPHISMS

被引:0
作者
Vodopyanov, S. K. [1 ]
机构
[1] Sobolev Inst Math, Novosibirsk, Russia
关键词
quasiconformal analysis; Sobolev space; composition operator; capacity estimate; QUASI-CONFORMAL MAPPINGS; CARNOT GROUPS; ANALYTIC PROPERTIES; ADMISSIBLE CHANGES; SPATIAL MAPPINGS; SPACES; ISOMORPHISMS; DIFFERENTIABILITY; VARIABLES; CAPACITY;
D O I
10.1134/S0037446620060051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that each homeomorphism phi : D -> D' of Euclidean domains in R-n, n >= 2, belonging to the Sobolev class W-p,loc(1) (D), where p is an element of [1, infinity), and having finite distortion induces a bounded composition operator from the weighted Sobolev space L-p(1)(D'; omega) into L-p(1)(D) for some weight function omega : D -> (0, infinity). This implies that in the cases p > n-1 and n >= 3 as well as p >= 1 and n >= 2 the inverse phi(-1) : D' -> D belongs to the Sobolev class W-1,loc(1)(D'), has finite distortion, and is differentiable H-n-almost everywhere in D'. We apply this result to Q(q,p)-homeomorphisms; the method of proof also works for homeomorphisms of Carnot groups. Moreover, we prove that the class of Q(q,p)-homeomorphisms is completely determined by the controlled variation of the capacity of cubical condensers whose shells are concentric cubes.
引用
收藏
页码:1002 / 1038
页数:37
相关论文
共 75 条
[31]  
Reichelderfer, 1955, CONTINUOUS TRANSFORM
[32]  
REIMANN HM, 1969, COMMENT MATH HELV, V44, P284
[33]  
Reshetnyak YG., 1966, Sib. Math. J., V7, P704, DOI 10.1007/BF00973267
[34]  
Reshetnyak Yu.G., 1989, Transl. Math. Monogr, DOI DOI 10.1090/MMONO/073
[35]  
RICKMAN S, 1993, QUASIREGULAR MAPPING
[36]  
Romanov A S, 1985, FUNCTIONAL ANAL MATH, P117
[37]   ACL and differentiability of a generalization of quasi-conformal maps [J].
Salimov, R. R. .
IZVESTIYA MATHEMATICS, 2008, 72 (05) :977-984
[38]  
Salimov RR., 2011, Mat. Stud., V35, P28
[39]  
Shvartsman PA., 1983, THESIS YAROSLAVL YAR
[40]  
Sobolev SL., 1941, DOKL AKAD NAUK+, V32, P380