High selective photocatalytic CO2 conversion into liquid solar fuel over a cobalt porphyrin-based metal-organic framework

被引:14
作者
Sadeghi, N. [1 ]
Sillanpaa, Mika [2 ,3 ]
机构
[1] Laval Univ, Dept Chem Engn, Quebec City, PQ G1V 0A8, Canada
[2] Ton Duc Thang Univ, Environm Engn & Management Res Grp, Ho Chi Minh City, Vietnam
[3] Ton Duc Thang Univ, Fac Environm & Labour Safety, Ho Chi Minh City, Vietnam
基金
加拿大自然科学与工程研究理事会;
关键词
Photocatalyst; Liquid solar fuel; Metal organic framework; Porphyrin; CO2; photoreduction; SILANE-COUPLING REAGENT; HETEROGENEOUS CATALYST; HYDROGEN-PRODUCTION; GREENHOUSE-GAS; REDUCTION; EFFICIENT; WATER; TIO2; PHOTOREDUCTION; SEPARATION;
D O I
10.1007/s43630-021-00027-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the present study, porphyrin-based metal-organic framework (Co/PMOF) was synthesized and characterized by different spectra analyses. The photoluminescence properties of porphyrin and Co/PMOF revealed that the photoluminescence of Co/PMOF was quenched compared to the porphyrin, indicating that the lifetime of photo-generated charge carriers in Co/PMOF is longer than porphyrin. The prepared Co/PMOF was applied as an efficient photocatalyst for CO2 photoconversion to formate in the presence of triethanolamine (TEOA) as a sacrificial agent under visible-light irradiation. The photoreaction results showed that 23.21 mu mol HCOO- was produced over Co/PMOF during the 6 h photocatalytic reaction under visible illumination, showing much better activity than the porphyrin, 4.56 mu mol HCOO-. No other products were detected, suggesting that this reaction over Co/PMOF has high selectivity. Co/PMOF reusability and stability were examined through recycling tests and there were no remarkable losses of photoactivity even after three cycles of photoreaction. Moreover, FTIR measurement and UV-Vis spectra demonstrated no notable changes in Co/PMOF structure. As a result, superior photocatalytic behavior of Co/PMOF was implied for CO2 photoreduction which highlights the great potential of assembly porphyrin and cobalt into MOFs for CO2 photoreduction.
引用
收藏
页码:391 / 399
页数:9
相关论文
共 87 条
[1]   Steady hydrogen evolution from water on Eosin Y-fixed TiO2 photocatalyst using a silane-coupling reagent under visible light irradiation [J].
Abe, R ;
Hara, K ;
Sayama, K ;
Domen, K ;
Arakawa, H .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2000, 137 (01) :63-69
[2]   Photocatalytic reduction of CO2 to hydrocarbons using AgBr/TiO2 nanocomposites under visible light [J].
Abou Asi, Mudar ;
He, Chun ;
Su, Minhua ;
Xia, Dehua ;
Lin, Long ;
Deng, Huiqi ;
Xiong, Ya ;
Qiu, Rongliang ;
Li, Xiang-zhong .
CATALYSIS TODAY, 2011, 175 (01) :256-263
[3]   Novel nanostructured-TiO2 materials for the photocatalytic reduction of CO2 greenhouse gas to hydrocarbons and syngas [J].
Akhter, Parveen ;
Hussain, Murid ;
Saracco, Guido ;
Russo, Nunzio .
FUEL, 2015, 149 :55-65
[4]   EFFECT OF METAL ATOM PERTURBATIONS ON THE LUMINESCENT SPECTRA OF PORPHYRINS [J].
ALLISON, JB ;
BECKER, RS .
JOURNAL OF CHEMICAL PHYSICS, 1960, 32 (05) :1410-1417
[5]   Effect of the anchoring group (carboxylate vs phosphonate) in Ru-complex-sensitized TiO2 on hydrogen production under visible light [J].
Bae, Eunyoung ;
Choi, Wonyong .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (30) :14792-14799
[6]   A Bioinspired Synthetic Approach for Building Metal-Organic Frameworks with Accessible Metal Centers [J].
Barron, Paul M. ;
Wray, Curtis A. ;
Hu, Chunhua ;
Guo, Zhiyong ;
Choe, Wonyoung .
INORGANIC CHEMISTRY, 2010, 49 (22) :10217-10219
[7]   A microporous metal-organic framework for separation of CO2/N2 and CO2/CH4 by fixed-bed adsorption [J].
Bastin, Laurent ;
Barcia, Patrick S. ;
Hurtado, Eric J. ;
Silva, Jose A. C. ;
Rodrigues, Alirio E. ;
Chen, Banglin .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (05) :1575-1581
[8]   Synthesis of nanocomposite CdS/TiO2 and investigation of its photocatalytic activity for CO2 reduction to CO and CH4 under visible light irradiation [J].
Beigi, Atefe Ahmad ;
Fatemi, Shohreh ;
Salehi, Zeinab .
JOURNAL OF CO2 UTILIZATION, 2014, 7 :23-29
[9]   Stepwise Synthesis of Metal-Organic Frameworks: Replacement of Structural Organic Linkers [J].
Burnett, Brandon J. ;
Barron, Paul M. ;
Hu, Chunhua ;
Choe, Wonyoung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (26) :9984-9987
[10]   Highly Efficient and Selective Photocatalytic CO2 Reduction to CO in Water by a Cobalt Porphyrin Molecular Catalyst [J].
Call, Arnau ;
Cibian, Mihaela ;
Yamamoto, Keiya ;
Nakazono, Takashi ;
Yamauchi, Kosei ;
Sakai, Ken .
ACS CATALYSIS, 2019, 9 (06) :4867-4874