Grafting PMMA Brushes from α-Alumina Nanoparticles via SI-ATRP

被引:42
作者
Khabibullin, Amir [1 ]
Bhangaonkar, Karan [1 ]
Mahoney, Clare [2 ]
Lu, Zhao [2 ]
Schmitt, Michael [2 ]
Sekizkardes, Ali Kemal [3 ]
Bockstaller, Michael R. [2 ]
Matyjaszewski, Krzysztof [1 ]
机构
[1] Carnegie Mellon Univ, Dept Chem, 4400 Fifth Ave, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Mat Sci & Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
[3] US DOE, NETL, 626 Cochrans Mill Rd, Pittsburgh, PA 15129 USA
基金
美国国家科学基金会;
关键词
SI-ATRP; hybrid materials; alpha-alumina; polymer brushes; poly(methyl methacrylate); grafting density; TRANSFER RADICAL POLYMERIZATION; HYBRID MATERIALS; NANOCOMPOSITES; SURFACES; COMPOSITES; MEMBRANES; BEHAVIOR;
D O I
10.1021/acsami.5b12311
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Alumina nanoparticles are widely used as nano fillers for polymer nanocomposites. Among several different polymorphs of alumina, alpha-alumina has the most desirable combination of physical properties. Hence, the attachment of polymer chains to alpha-alumina to enhance compatibility in polymeric matrixes is an important goal. However, the chemical inertness and low concentration of surface hydroxyl groups have rendered polymer modification of alpha-alumina a long-standing challenge. Herein, we report that activation of a-alumina in concentrated or molten NaOH as well as in molten K2S2O7 increased polymer graft density up to 50%, thereby facilitating the synthesis of alpha-alumina brush particles with uniform grafting density of 0.05 nm(-2) that are readily miscible or dispersible in organic solvents or in chemically compatible polymeric hosts.
引用
收藏
页码:5458 / 5465
页数:8
相关论文
共 39 条
[1]  
Advincula R. C., 2009, DEKKER ENCY NANOSCIE, P3417
[2]   Glass-transition temperature behavior of alumina/PMMA nanocomposites [J].
Ash, BJ ;
Siegel, RW ;
Schadler, LS .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2004, 42 (23) :4371-4383
[3]   Mechanical behavior of alumina/poly(methyl methacrylate) nanocomposites [J].
Ash, BJ ;
Siegel, RW ;
Schadler, LS .
MACROMOLECULES, 2004, 37 (04) :1358-1369
[4]   Influence of the surface modification of alumina nanoparticles on the thermal stability and fire reaction of PMMA composites [J].
Cinausero, Nicolas ;
Azema, Nathalie ;
Cochez, Marianne ;
Ferriol, Michel ;
Essahli, Mohamed ;
Ganachaud, Francois ;
Lopez-Cuesta, Jose-Marie .
POLYMERS FOR ADVANCED TECHNOLOGIES, 2008, 19 (06) :701-709
[5]   High-Transparency Polymer Nanocomposites Enabled by Polymer-Graft Modification of Particle Fillers [J].
Dang, Alei ;
Ojha, Satyajeet ;
Hui, Chin Ming ;
Mahoney, Clare ;
Matyjaszewski, Krzysztof ;
Bockstaller, Michael R. .
LANGMUIR, 2014, 30 (48) :14434-14442
[6]   Hybrid nanostructures for SERS: materials development and chemical detection [J].
Fateixa, Sara ;
Nogueira, Helena I. S. ;
Trindade, Tito .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (33) :21046-21071
[7]   Conducting polymer nanocomposites: A brief overview [J].
Gangopadhyay, R ;
De, A .
CHEMISTRY OF MATERIALS, 2000, 12 (03) :608-622
[8]   Understanding the Role of Defect Sites in Glucan Hydrolysis on Surfaces [J].
Gazit, Oz M. ;
Katz, Alexander .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (11) :4398-4402
[9]   Synthesis of aluminum oxide/gradient copolymer composites by atom transfer radical polymerization [J].
Gu, B ;
Sen, A .
MACROMOLECULES, 2002, 35 (23) :8913-8916
[10]   Fabrication of Metal Oxide-Polymer Hybrid Nanocomposites [J].
Haldorai, Yuvaraj ;
Shim, Jae-Jin .
ORGANIC-INORGANIC HYBRID NANOMATERIALS, 2015, 267 :249-281