3D NETWORK GRAPHENE INTERLAYER IN FIBER REINFORCED COMPOSITES: EXCELLENT INTERLAMINAR FRACTURE TOUGHNESS AND STRENGTH

被引:0
作者
Jia, Jingjing [1 ]
Du, Xusheng [2 ]
Mai, Yiu-Wing [2 ]
Kim, Jang-Kyo [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[2] Univ Sydney, Ctr Adv Mat Technol CAMT, Sch Aerosp Mech & Mechatron Engn J07, Sydney, NSW 2006, Australia
来源
20TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS | 2015年
基金
澳大利亚研究理事会;
关键词
Polymer-matrix composites (PMCs); Network graphene interlayer; Fracture toughness; Interfacial strength; Fractography; MODE-I; MECHANICAL-PROPERTIES; DELAMINATION TOUGHNESS; CARBON NANOTUBES; CFRPS; PERFORMANCE;
D O I
暂无
中图分类号
TB33 [复合材料];
学科分类号
摘要
This paper reports our recent work on developing a novel CVD grown 3D network graphene interleaves in glass fiber reinforced composites (GFRPs) with excellent interlaminar fracture toughness and interlaminar shear strength. By incorporating the network graphene in the failure-prone mid-plane, the interleaved multiscale composites present a remarkable increases of 70% and 206% in mode I and II interlaminar fracture toughness, respectively, and 36% enhancement in interlaminar shear strength, when compared to those composites without the interleaves. The pertinent mechanisms responsible for the toughening effects of interleaves include crack deflection and formation of interfacial micro-cracks with significant increase in surface areas owing to the 3D hollow sphere-like graphene wrapping around the epoxy matrix as well as graphene fracture and slippage between adjacent layers. This work opens a new venue towards the development of 3D network graphene interleaved FRPs with excellent toughness and high ILSS for suppression of crack growth under delamination loading compared to its CNT and CNF counterparts.
引用
收藏
页数:10
相关论文
共 25 条
[1]   Mechanical performance of carbon fibre-reinforced composites based on stitched preforms [J].
Beier, Uwe ;
Fischer, Frank ;
Sandler, Jan K. W. ;
Altstaedt, Volker ;
Weimer, Christian ;
Buchs, Wolfgang .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2007, 38 (07) :1655-1663
[2]   Fracture toughness and failure mechanism of graphene based epoxy composites [J].
Chandrasekaran, Swetha ;
Sato, Narumichi ;
Toelle, Folke ;
Muelhaupt, Rolf ;
Fiedler, Bodo ;
Schulte, Karl .
COMPOSITES SCIENCE AND TECHNOLOGY, 2014, 97 :90-99
[3]   On the effects of stitching in CFRPs - I. Mode I delamination toughness [J].
Dransfield, KA ;
Jain, LK ;
Mai, YW .
COMPOSITES SCIENCE AND TECHNOLOGY, 1998, 58 (06) :815-827
[4]   Flame synthesis of carbon nanotubes onto carbon fiber woven fabric and improvement of interlaminar toughness of composite laminates [J].
Du, Xusheng ;
Liu, Hong-Yuan ;
Xu, Feng ;
Zeng, Ying ;
Mai, Yiu-Wing .
COMPOSITES SCIENCE AND TECHNOLOGY, 2014, 101 :159-166
[5]   EFFECTS OF FIBER BRIDGING ON GIC OF A UNIDIRECTIONAL GLASS EPOXY COMPOSITE [J].
HUANG, XN ;
HULL, D .
COMPOSITES SCIENCE AND TECHNOLOGY, 1989, 35 (03) :283-299
[6]  
Jain LK, 1998, COMPOS SCI TECHNOL, V58, P829, DOI 10.1016/S0266-3538(97)00186-3
[7]   Exceptional Electrical Conductivity and Fracture Resistance of 3D Interconnected Graphene Foam/Epoxy Composites [J].
Jia, Jingjing ;
Sun, Xinying ;
Lin, Xiuyi ;
Shen, Xi ;
Mai, Yiu-Wing ;
Kim, Jang-Kyo .
ACS NANO, 2014, 8 (06) :5774-5783
[8]   Improved interlaminar shear properties of multiscale carbon fiber composites with bucky paper interleaves made from carbon nanofibers [J].
Khan, Shafi Ullah ;
Kim, Jang-Kyo .
CARBON, 2012, 50 (14) :5265-5277
[9]   Synchronous effects of multiscale reinforced and toughened CFRP composites by MWNTs-EP/PSF hybrid nanofibers with preferred orientation [J].
Li, Peng ;
Liu, Dawei ;
Zhu, Bo ;
Li, Bo ;
Jia, Xiaolong ;
Wang, Lili ;
Li, Gang ;
Yang, Xiaoping .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2015, 68 :72-80
[10]   Mechanical performance of laminated composites incorporated with nanofibrous membranes [J].
Liu, L. ;
Huang, Z. -M. ;
He, C. L. ;
Han, X. J. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 435 :309-317