Several recent studies proposed an important increase in exhumation rate in the western European Alps since circa 5-4 Ma. In order to assess potential spatial differences in exhumation histories, we present new apatite fission track (AFT) and apatite (U-Th)/He (AHe) ages from the central Aar Massif (Guttannen area, Switzerland) and the western Lepontine Dome (Formazza area, Italy). Internal U/Th zoning in apatites explains alpha-ejection-corrected AHe ages that are older than the corresponding AFT ages in this study. A qualitative interpretation of AFT and AHe age-elevation relationships suggests a two-phase (9-7 and 5-3Ma) exhumation scenario affecting the central Alps, with a stronger expression of the Pliocene signal in the Formazza area. However, a quantitative evaluation of exhumation scenarios using the 3-D heat equation solver Pecube highlights the existence of several other likely scenarios, casting doubt on the validity of a qualitative interpretation of the age-elevation relationships. In Formazza, scenarios suggested by quantitative modeling include continuous denudation at a rate of similar to 750 m/Ma and a one-step exhumation rate change from 300 to 1000 m/Ma at 5 Ma. In Guttannen, they include continuous denudation at a rate of similar to 400 m/Ma with valley deepening and two periods of higher exhumation rate (increasing from 300 to 700 m/Ma repeatedly at 9-7 and at 5-3 Ma). Contingent upon further flexural isostatic modeling, the magnitude of exhumation recorded in the axial region of the Alps since circa 5 Ma does not appear sufficient to solely explain the denudation recorded in the North Alpine Foreland Basin. Citation: Vernon, A. J., P. A. van der Beek, H. D. Sinclair, C. Persano, J. Foeken, and F. M. Stuart (2009), Variable late Neogene exhumation of the central European Alps: Low-temperature thermochronology from the Aar Massif, Switzerland, and the Lepontine Dome, Italy, Tectonics, 28, TC5004, doi: 10.1029/2008TC002387.