The role of information state and adjoint in relating nonlinear output feedback risk-sensitive control and dynamic games

被引:27
作者
Charalambous, CD
机构
[1] Department of Electrical Engineering, McGill University, Montreal
关键词
dynamic games; risk sensitive; small-noise limit; stochastic control;
D O I
10.1109/9.618249
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper employs logarithmic transformations to establish relations between continuous-time nonlinear partially observable risk-sensitive control problems and analogous output feedback dynamic games, The first logarithmic transformation is introduced to relate the stochastic information state to a deterministic information state, The second logarithmic transformation is applied to the risk-sensitive cost function using the Laplace-Varadhan lemma, In the small noise limit, this cost function is shown to be logarithmically equivalent to the cost function of an analogous dynamic game.
引用
收藏
页码:1163 / 1170
页数:8
相关论文
共 18 条
[1]   ON THE RELATION OF ZAKAI EQUATIONS AND MORTENSEN EQUATIONS [J].
BENES, V ;
KARATZAS, I .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1983, 21 (03) :472-489
[2]   General finite-dimensional risk-sensitive problems and small noise limits [J].
Bensoussan, A ;
Elliott, RJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (02) :210-215
[3]   OPTIMAL-CONTROL OF PARTIALLY OBSERVABLE STOCHASTIC-SYSTEMS WITH AN EXPONENTIAL-OF-INTEGRAL PERFORMANCE INDEX [J].
BENSOUSSAN, A ;
VANSCHUPPEN, JH .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1985, 23 (04) :599-613
[4]  
CHARALAMBOUS C, 1995, 9495014 TR ID STAT U
[5]  
CHARALAMBOUS C, 1996, P 13 IFAC WORLD C SA, P389
[6]  
CHARALAMBOUS CD, 1994, IEEE DECIS CONTR P, P1433, DOI 10.1109/CDC.1994.411246
[7]  
Charalambous CD, 1995, PROCEEDINGS OF THE 34TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, P2858, DOI 10.1109/CDC.1995.478552
[8]   OPTIMAL-CONTROL FOR PARTIALLY OBSERVED DIFFUSIONS [J].
FLEMING, WH ;
PARDOUX, E .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1982, 20 (02) :261-285
[9]  
FLEMING WH, 1992, STOCHASTIC THEORY AD, P185
[10]  
Freidlin MI, 1984, RANDOM PERTURBATIONS