Real-Time Activity Classification Using Ambient and Wearable Sensors

被引:61
作者
Atallah, Louis [1 ]
Lo, Benny [1 ]
Ali, Raza [1 ]
King, Rachel [1 ]
Yang, Guang-Zhong [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London SW7 2AZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Ctr Pervas Sensing, London SW7 2AZ, England
来源
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE | 2009年 / 13卷 / 06期
基金
英国工程与自然科学研究理事会;
关键词
Activity recognition; body sensor networks; chronic disease management; healthcare; wireless sensors; POSTOPERATIVE RECOVERY; PHYSICAL-ACTIVITY; ACCELEROMETRY; MOTION; MODELS;
D O I
10.1109/TITB.2009.2028575
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
New approaches to chronic disease management within a home or community setting offer patients the prospect of more individually focused care and improved quality of life. This paper investigates the use of a light-weight ear worn activity recognition device combined with wireless ambient sensors for identifying common activities of daily living. A two-stage Bayesian classifier that uses information from both types of sensors is presented. Detailed experimental validation is provided for datasets collected in a laboratory setting as well as in a home environment. Issues concerning the effective use of the relatively limited discriminative power of the ambient sensors are discussed. The proposed framework bodes well for a multi-dwelling environment, and offers a pervasive sensing environment for both patients and care-takers.
引用
收藏
页码:1031 / 1039
页数:9
相关论文
共 35 条
[1]   Compendium of Physical Activities: an update of activity codes and MET intensities [J].
Ainsworth, BE ;
Haskell, WL ;
Whitt, MC ;
Irwin, ML ;
Swartz, AM ;
Strath, SJ ;
O'Brien, WL ;
Bassett, DR ;
Schmitz, KH ;
Emplaincourt, PO ;
Jacobs, DR ;
Leon, AS .
MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2000, 32 (09) :S498-S516
[2]  
ATALLAH L, 2008, P IEEE 5 INT SUMM SC, P165
[3]   A pervasive body sensor network for measuring postoperative recovery at home [J].
Aziz, O. ;
Atallah, L. ;
Lo, B. ;
ElHelw, M. ;
Wang, L. ;
Yang, G. Z. ;
Darzi, A. .
SURGICAL INNOVATION, 2007, 14 (02) :83-90
[4]   Activity recognition from user-annotated acceleration data [J].
Bao, L ;
Intille, SS .
PERVASIVE COMPUTING, PROCEEDINGS, 2004, 3001 :1-17
[5]   The mobile sensing platform: An embedded activity recognition system [J].
Choudhury, Tanzeem ;
Consolvo, Sunny ;
Harrison, Beverly ;
LaMarca, Anthony ;
LeGrand, Louis ;
Rahimi, Ali ;
Rea, Adam ;
Borriello, Gaetano ;
Hemingway, Bruce ;
Klasnja, Predrag Pedja ;
Koscher, Karl ;
Landay, James A. ;
Lester, Jonathan ;
Wyatt, Danny ;
Haehnel, Dirk ;
Hightower, Jeffrey .
IEEE PERVASIVE COMPUTING, 2008, 7 (02) :32-41
[6]   Diabetic retinopathy and diabetic macular edema - Pathophysiology, screening, and novel therapies [J].
Ciulla, TA ;
Amador, AG ;
Zinman, B .
DIABETES CARE, 2003, 26 (09) :2653-2664
[7]  
DEVAUL R, 2005, P 7 IEEE INT S WEAR, P4
[8]  
Du YT, 2006, INT C PATT RECOG, P618
[9]   Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions [J].
Ermes, Miikka ;
Parkka, Juha ;
Mantyjarvi, Jani ;
Korhonen, Ilkka .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2008, 12 (01) :20-26
[10]   Detection of posture and motion by accelerometry: a validation study in ambulatory monitoring [J].
Foerster, F ;
Smeja, M ;
Fahrenberg, J .
COMPUTERS IN HUMAN BEHAVIOR, 1999, 15 (05) :571-583