Intermolecular interactions in optical cavities: An ab initio QED study

被引:109
作者
Haugland, Tor S. [1 ]
Schaefer, Christian [2 ,3 ]
Ronca, Enrico [2 ,3 ,4 ]
Rubio, Angel [2 ,3 ,5 ,6 ]
Koch, Henrik [1 ,7 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Chem, N-7491 Trondheim, Norway
[2] Max Planck Inst Struct & Dynam Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
[3] Ctr Free Electron Laser Sci, Luruper Chaussee 149, D-22761 Hamburg, Germany
[4] CNR, IPCF, Ist Proc Chim Fis, Via G Moruzzi 1, I-56124 Pisa, Italy
[5] Flatiron Inst, Ctr Computat Quantum Phys CCQ, 162 Fifth Ave, New York, NY 10010 USA
[6] Univ Basque Country, Dept Fis Mat, Nanobio Spect Grp, San Sebastian 20018, Spain
[7] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56124 Pisa, Italy
基金
欧洲研究理事会;
关键词
QUANTUM ELECTRODYNAMICS; GROUND-STATE; ROOM-TEMPERATURE; CHARGE-TRANSFER; HYDROGEN-BOND; MAGIC-ANGLE; GAS-PHASE; REACTIVITY; RADIATION; CHEMISTRY;
D O I
10.1063/5.0039256
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Intermolecular bonds are weak compared to covalent bonds, but they are strong enough to influence the properties of large molecular systems. In this work, we investigate how strong light-matter coupling inside an optical cavity can modify intermolecular forces and illustrate the varying necessity of correlation in their description. The electromagnetic field inside the cavity can modulate the ground state properties of weakly bound complexes. Tuning the field polarization and cavity frequency, the interactions can be stabilized or destabilized, and electron densities, dipole moments, and polarizabilities can be altered. We demonstrate that electron-photon correlation is fundamental to describe intermolecular interactions in strong light-matter coupling. This work proposes optical cavities as a novel tool to manipulate and control ground state properties, solvent effects, and intermolecular interactions for molecules and materials.
引用
收藏
页数:11
相关论文
共 79 条
[1]   Cavity polaritons in microcavities containing disordered organic semiconductors [J].
Agranovich, VM ;
Litinskaia, M ;
Lidzey, DG .
PHYSICAL REVIEW B, 2003, 67 (08)
[2]  
Anoop T, 2020, CHEMRXIV12982358
[3]   Definition of the hydrogen bond (IUPAC Recommendations 2011) [J].
Arunan, Elangannan ;
Desiraju, Gautam R. ;
Klein, Roger A. ;
Sadlej, Joanna ;
Scheiner, Steve ;
Alkorta, Ibon ;
Clary, David C. ;
Crabtree, Robert H. ;
Dannenberg, Joseph J. ;
Hobza, Pavel ;
Kjaergaard, Henrik G. ;
Legon, Anthony C. ;
Mennucci, Benedetta ;
Nesbitt, David J. .
PURE AND APPLIED CHEMISTRY, 2011, 83 (08) :1637-1641
[4]  
Atkins P, 2011, Molecular Quantum Mechanics, Vfifth
[5]  
Atkins P., 2016, PHYS CHEM
[6]   The chemical bond between Au(I) and the noble gases.: Comparative study of NgAuF and NgAu+ (Ng = Ar, Kr, Xe) by density functional and coupled cluster methods [J].
Belpassi, Leonardo ;
Infante, Ivan ;
Tarantelli, Francesco ;
Visscher, Lucas .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (03) :1048-1060
[7]  
Buhmann S., 2013, DISPERSION FORCES 2, V248
[8]  
Buhmann S.Y., 2013, DISPERSION FORCES MA, V247
[9]   Resonant catalysis of thermally activated chemical reactions with vibrational polaritons [J].
Campos-Gonzalez-Angulo, Jorge A. ;
Ribeiro, Raphael F. ;
Yuen-Zhou, Joel .
NATURE COMMUNICATIONS, 2019, 10 (1)
[10]   Unconventional superconductivity in magic-angle graphene superlattices [J].
Cao, Yuan ;
Fatemi, Valla ;
Fang, Shiang ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Kaxiras, Efthimios ;
Jarillo-Herrero, Pablo .
NATURE, 2018, 556 (7699) :43-+