A Functional Central Limit Theorem for a Class of Interacting Markov Chain Monte Carlo Methods

被引:6
作者
Bercu, Bernard [1 ,2 ]
Del Moral, Pierre [1 ,2 ]
Doucet, Arnaud [3 ,4 ,5 ]
机构
[1] Univ Bordeaux, Ctr INRIA Bordeaux & Sud Ouest, F-33405 Talence, France
[2] Univ Bordeaux, Inst Math Bordeaux, F-33405 Talence, France
[3] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
[4] Univ British Columbia, Dept Comp Sci, Vancouver, BC V6T 1Z2, Canada
[5] Inst Stat Math, Minato Ku, Tokyo 1068569, Japan
关键词
Multivariate and functional central limit theorems; random fields; martingale limit theorems; self-interacting Markov chains; Markov chain Monte Carlo methods; Feynman-Kac semigroups;
D O I
10.1214/EJP.v14-701
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a functional central limit theorem for a new class of interacting Markov chain Monte Carlo algorithms. These stochastic algorithms have been recently introduced to solve non-linear measure-valued equations. We provide an original theoretical analysis based on semigroup techniques on distribution spaces and fluctuation theorems for self-interacting random fields. Additionally we also present a series of sharp mean error bounds in terms of the semigroup associated with the first order expansion of the limiting measure-valued process. We illustrate our results in the context of Feynman-Kac semigroups.
引用
收藏
页码:2130 / 2155
页数:26
相关论文
共 11 条
[1]   A note on convergence of the equi-energy sampler [J].
Andrieu, Christophe ;
Jasra, Ajay ;
Doucet, Arnaud ;
Del Moral, Pierre .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2008, 26 (02) :298-312
[2]  
[Anonymous], 2004, PROB APPL S
[3]  
BROCKWELL AE, 2007, SEQUENTIALLY INTERAC
[4]   Self-interacting Markov chains [J].
Del Moral, P ;
Miclo, L .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2006, 24 (03) :615-660
[5]  
DELMORAL P, 2003, P ROYAL SOC LOND A, V460, P325
[6]  
DELMORAL P, 2008, RR6435 INRIA
[7]  
Doucet A., 2001, Sequential Monte Carlo methods in practice, V1
[8]   THE BEST CONSTANTS IN THE KHINTCHINE INEQUALITY [J].
HAAGERUP, U .
STUDIA MATHEMATICA, 1981, 70 (03) :231-283
[9]  
JACOD J, 1987, SERIES COMPREHENSIVE, V288
[10]  
JASRA A, 2007, NONLINEAR MARKOV CHA