Early detection of radiographic knee osteoarthritis using computer-aided analysis

被引:80
|
作者
Shamir, L. [1 ]
Ling, S. M. [2 ]
Scott, W. [3 ]
Hochberg, M. [4 ]
Ferrucci, L. [2 ]
Goldberg, I. G. [1 ]
机构
[1] NIA, Image Informat & Computat Biol Unit, Genet Lab, NIH, Baltimore, MD 21224 USA
[2] NIA, Clin Res Branch, NIH, Baltimore, MD 21225 USA
[3] Johns Hopkins Sch Med, Dept Radiol, Baltimore, MD 21287 USA
[4] Univ Maryland, Med Ctr, Dept Med, Baltimore, MD 21201 USA
关键词
Image analysis; Osteoarthritis detection; Early detection; ARTICULAR-CARTILAGE; BONE; SELECTION; SEVERITY; TEXTURE; HIP;
D O I
10.1016/j.joca.2009.04.010
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Objective: To determine whether computer-based analysis can detect features predictive of osteoarthritis (OA) development in radiographically normal knees. Method: A systematic computer-aided image analysis method weighted neighbor distances using a compound hierarchy of algorithms representing morphology (WND-CHARM) was used to analyze pairs of weight-bearing knee X-rays. Initial X-rays were all scored as normal Kellgren-Lawrence (KL) grade 0, and on follow-up approximately 20 years later either developed OA (defined as KL grade = 2) or remained normal. Results: The computer-aided method predicted whether a knee would change from KL grade 0 to grade 3 with 72% accuracy (P < 0.00001), and to grade 2 with 62% accuracy (P < 0.01). Although a large part of the predictive signal comes from the image tiles that contained the joint, the region adjacent to the tibial spines provided the strongest predictive signal. Conclusion: Radiographic features detectable using a computer-aided image analysis method can predict the future development of radiographic knee OA. Published by Elsevier Ltd on behalf of Osteoarthritis Research Society International.
引用
收藏
页码:1307 / 1312
页数:6
相关论文
共 50 条
  • [1] Osteoarthritis severity of the hip by computer-aided grading of radiographic images
    I. Boniatis
    L. Costaridou
    D. Cavouras
    I. Kalatzis
    E. Panagiotopoulos
    G. Panayiotakis
    Medical and Biological Engineering and Computing, 2006, 44
  • [2] Osteoarthritis severity of the hip by computer-aided grading of radiographic images
    Boniatis, I.
    Costaridou, L.
    Cavouras, D.
    Kalatzis, I.
    Panagiotopoulos, E.
    Panayiotakis, G.
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2006, 44 (09) : 793 - 803
  • [3] Computer-aided diagnosis of early knee osteoarthritis based on MRI T2 mapping
    Wu, Yixiao
    Yang, Ran
    Jia, Sen
    Li, Zhanjun
    Zhou, Zhiyang
    Lou, Ting
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2014, 24 (06) : 3379 - 3388
  • [4] Computer-Aided Detection of Early Cancer in the Esophagus using HD Endoscopy Images
    van der Sommen, Fons
    Zinger, Svitlana
    Schoon, Erik J.
    de With, Peter H. N.
    MEDICAL IMAGING 2013: COMPUTER-AIDED DIAGNOSIS, 2013, 8670
  • [5] COMPUTER-AIDED DIAGNOSTIC TOOL FOR EARLY DETECTION OF PROSTATE CANCER
    Reda, Islam
    Shalaby, Ahmed
    Khalifa, Fahmi
    Elmogy, Mohammed
    Aboulfotouh, Ahmed
    Abou El-Ghar, Mohamed
    Hosseini-Asl, Ehsan
    Werghi, Naoufel
    Keynton, Robert
    El-Baz, Ayman
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 2668 - 2672
  • [6] Computer-Aided Breast Cancer Detection Using Mammograms: A Review
    El Atlas, Nadia
    El Aroussi, Mohammed
    Wahbi, Mohammed
    2014 SECOND WORLD CONFERENCE ON COMPLEX SYSTEMS (WCCS), 2014, : 626 - 631
  • [7] Computer-aided grading and quantification of hip osteoarthritis severity employing shape descriptors of radiographic hip joint space
    Boniatis, Loannis
    Cavouras, Dionisis
    Costaridou, Lena
    Kalatzis, Ioannis
    Panagiotopoulos, Elias
    Panayiotakis, George
    COMPUTERS IN BIOLOGY AND MEDICINE, 2007, 37 (12) : 1786 - 1795
  • [8] Computer-aided 3D analysis of anatomy and radiographic parameters of the distal radius
    Suojarvi, Nora
    Tampio, Juha
    Lindfors, Nina
    Waris, Eero
    CLINICAL ANATOMY, 2021, 34 (04) : 574 - 580
  • [9] Computer-Aided Detection of Prostate Cancer inMRI
    Litjens, Geert
    Debats, Oscar
    Barentsz, Jelle
    Karssemeijer, Nico
    Huisman, Henkjan
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (05) : 1083 - 1092
  • [10] Contralateral advanced radiographic knee osteoarthritis predicts radiographic progression and future arthroplasty in ipsilateral knee with early-stage osteoarthritis
    Wu, Rongjie
    Fu, Guangtao
    Li, Mengyuan
    Ma, Yuanchen
    Li, Qingtian
    Deng, Zhantao
    Zheng, Qiujian
    CLINICAL RHEUMATOLOGY, 2022, 41 (10) : 3151 - 3157