Chalcogenization-Derived Band Gap Grading in Solution-Processed CuInxGa1-x(Se,S)2 Thin-Film Solar Cells

被引:31
作者
Park, Se Jin [1 ,3 ]
Jeon, Hyo Sang [1 ]
Cho, Jin Woo [2 ]
Hwang, Yun Jeong [1 ]
Park, Kyung Su [2 ]
Shim, Hyeorg Seop [5 ]
Song, Jae Kyu [5 ]
Cho, Yunae [6 ]
Kim, Dong-Wook [6 ]
Kim, Jihyun [3 ]
Min, Byoung Koun [1 ,4 ]
机构
[1] Korea Inst Sci & Technol, Clean Energy Res Ctr, Seoul 02792, South Korea
[2] Korea Inst Sci & Technol, Adv Anal Ctr, Seoul 02792, South Korea
[3] Korea Univ, Dept Chem & Biol Engn, Seoul 02841, South Korea
[4] Korea Univ, Green Sch, Seoul 02841, South Korea
[5] Kyung Hee Univ, Dept Chem, Seoul 02447, South Korea
[6] Ewha Womans Univ, Dept Phys, Seoul 03760, South Korea
关键词
solar cells; CIGSSe; solution process; band gap grading chalcogenization; LOW-COST; CHALCOPYRITE; PERFORMANCE;
D O I
10.1021/acsami.5b09054
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Significant enhancement of solution-processed CuInxGa1-x(Se,S)(2) (CIGSSe) thin-film solar cell performance was achieved by inducing a band gap gradient in the film thickness, which was triggered by the chalcogenization process. Specifically, after the preparation of an amorphous mixed oxide film of Cu, In, and Ga by a simple paste coating method chalcogenization under Se vapor, along with the flow of dilute H2S gas, resulted in the formation of CIGSSe films with graded composition distribution: S-rich top, In- and Se-rich middle, and Ga- and S-rich bottom. This uneven compositional distribution was confirmed to lead to a band gap gradient in the film, which may also be responsible for enhancement in the open circuit voltage and reduction in photocurrent loss, thus increasing the overall efficiency. The highest power conversion efficiency of 11.7% was achieved with J(sc) of 28.3 mA/cm(2), V-oc of 601 mV, and FF of 68.6%.
引用
收藏
页码:27391 / 27396
页数:6
相关论文
共 29 条
[1]   Towards low-cost, environmentally friendly printed chalcopyrite and kesterite solar cells [J].
Azimi, Hamed ;
Hou, Yi ;
Brabec, Christoph J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (06) :1829-1849
[2]   Solution-based processing of Cu(In,Ga)Se2 absorber layers for 11% efficiency solar cells via a metallic intermediate [J].
Berner, Ulrich ;
Widenmeyer, Markus .
PROGRESS IN PHOTOVOLTAICS, 2015, 23 (10) :1260-1266
[3]   Thinning of CIGS solar cells: Part I: Chemical processing in acidic bromine solutions [J].
Bouttemy, M. ;
Tran-Van, P. ;
Gerard, I. ;
Hildebrandt, T. ;
Causier, A. ;
Pelouard, J. L. ;
Dagher, G. ;
Jehl, Z. ;
Naghavi, N. ;
Voorwinden, G. ;
Dimmler, B. ;
Powalla, M. ;
Guillemoles, J. F. ;
Lincot, D. ;
Etcheberry, A. .
THIN SOLID FILMS, 2011, 519 (21) :7207-7211
[4]  
Brown G, 2012, 2012 38TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), P3230, DOI 10.1109/PVSC.2012.6318265
[5]  
Chirila A, 2011, NAT MATER, V10, P857, DOI [10.1038/nmat3122, 10.1038/NMAT3122]
[6]   Study of the effect of gallium grading in Cu(In,Ga)Se2 [J].
Dullweber, T ;
Hanna, G ;
Shams-Kolahi, W ;
Schwartzlander, A ;
Contreras, MA ;
Noufi, R ;
Schock, HW .
THIN SOLID FILMS, 2000, 361 :478-481
[7]   Sulfide Nanocrystal Inks for Dense Cu(In1-xGax)(S1-ySey)2 Absorber Films and Their Photovoltaic Performance [J].
Guo, Qijie ;
Ford, Grayson M. ;
Hillhouse, Hugh W. ;
Agrawal, Rakesh .
NANO LETTERS, 2009, 9 (08) :3060-3065
[8]   Low-Cost Inorganic Solar Cells: From Ink To Printed Device [J].
Habas, Susan E. ;
Platt, Heather A. S. ;
van Hest, Maikel F. A. M. ;
Ginley, David S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6571-6594
[9]   Thin-film solar cells: Device measurements and analysis [J].
Hegedus, SS ;
Shafarman, WN .
PROGRESS IN PHOTOVOLTAICS, 2004, 12 (2-3) :155-176
[10]   Non-vacuum methods for formation of Cu(In,Ga)(Se,S)2 thin film photovoltaic absorbers [J].
Hibberd, C. J. ;
Chassaing, E. ;
Liu, W. ;
Mitzi, D. B. ;
Lincot, D. ;
Tiwari, A. N. .
PROGRESS IN PHOTOVOLTAICS, 2010, 18 (06) :434-452