Modified inertial subgradient extragradient method in reflexive Banach spaces

被引:9
作者
Ali, Bashir [1 ]
Ugwunnadi, G. C. [2 ,5 ]
Lawan, M. S. [1 ,3 ]
Khan, A. R. [4 ]
机构
[1] Bayero Univ, Dept Math Sci, Kano, Nigeria
[2] Univ Eswatini, Dept Math, Private Bag 4, Kwaluseni, Eswatini
[3] Kaduna Polytech, Dept Math & Stat, Kaduna, Nigeria
[4] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran, Saudi Arabia
[5] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, POB 94, ZA-0204 Pretoria, South Africa
来源
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA | 2021年 / 27卷 / 01期
关键词
Bregman distance; Bregman Demigeneralized map; Monotone map; Subgradient extragradient method; Fixed point; SOLVING VARIATIONAL-INEQUALITIES; STRONG-CONVERGENCE;
D O I
10.1007/s40590-021-00332-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a modified inertial subgradient extragradient algorithm in reflexive Banach spaces and prove a strong convergence theorem for approximating common solutions of a fixed point equation of a demigeneralized mapping and a variational inequality problem of a monotone and Lipschitz mapping. Our result extends and improves important recent results announced by many authors.
引用
收藏
页数:26
相关论文
共 33 条
[1]  
Ali B., J NONLINEAR SCI APP
[2]   A new convergence theorem for families of asymptotically nonexpansive maps and solution of variational inequality problem [J].
Ali B. ;
Ugwunnadi G.C. .
Afrika Matematika, 2018, 29 (1-2) :115-136
[3]   Convergence of a Hybrid Iterative Scheme for Fixed Points of Nonexpansive Maps, Solutions of Equilibrium, and Variational Inequalities Problems [J].
Ali, Bashir .
JOURNAL OF MATHEMATICS, 2013, 2013
[4]  
[Anonymous], 1964, COMP MATH MATH PHYS+
[5]   GRADIENTS OF CONVEX FUNCTIONS [J].
ASPLUND, E ;
ROCKAFEL.RT .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 139 (MAY) :443-&
[6]  
Bauschke H. H., 1997, J. Convex Anal, V4, P27
[7]   Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces [J].
Bauschke, HH ;
Borwein, JM ;
Combettes, PL .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) :615-647
[8]  
Bonnans JF., 2000, PERTURBATION ANAL OP
[9]  
Bregman L., 1967, USSR Comput. Math. Math. Phys., V7, P200, DOI DOI 10.1016/0041-5553(67)90040-7
[10]   Bregman distances, totally convex functions, and a method for solving operator equations in banach spaces [J].
Butnariu, Dan ;
Resmerita, Elena .
ABSTRACT AND APPLIED ANALYSIS, 2006,