Note on the velocity and related fields of steady irrotational two-dimensional surface gravity waves

被引:39
作者
Clamond, Didier [1 ]
机构
[1] Univ Nice Sophia Antipolis, Lab JA Dieudonne, F-06108 Nice 2, France
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2012年 / 370卷 / 1964期
关键词
surface waves; velocity field; acceleration field; numerical solution; SOLITARY WATER-WAVES; FINITE DEPTH; DEEP-WATER; NUMERICAL-SOLUTION; TRAJECTORIES; VORTICITY; SYMMETRY; PRESSURE; EQUATION;
D O I
10.1098/rsta.2011.0470
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The velocity and other fields of steady two-dimensional surface gravity waves in irrotational motion are investigated numerically. Only symmetric waves with one crest per wavelength are considered, i.e. Stokes waves of finite amplitude, but not the highest waves, nor subharmonic and superharmonic bifurcations of Stokes waves. The numerical results are analysed, and several conjectures are made about the velocity and acceleration fields.
引用
收藏
页码:1572 / 1586
页数:15
相关论文
共 22 条
[1]   Numerical solution of Nekrasov's equation in the boundary layer near the crest for waves near the maximum height [J].
Byatt-Smith, JG .
STUDIES IN APPLIED MATHEMATICS, 2001, 106 (04) :393-405
[2]  
CHEN B, 1980, STUD APPL MATH, V62, P1
[3]   Symmetry of steady deep-water waves with vorticity [J].
Constantin, A ;
Escher, J .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2004, 15 :755-768
[4]   Symmetry of steady periodic gravity water waves with vorticity [J].
Constantin, Adrian ;
Ehrnstrom, Mats ;
Wahlen, Erik .
DUKE MATHEMATICAL JOURNAL, 2007, 140 (03) :591-603
[5]   Particle trajectories in solitary water waves [J].
Constantin, Adrian ;
Escher, Joachim .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 44 (03) :423-431
[6]   The trajectories of particles in Stokes waves [J].
Constantin, Adrian .
INVENTIONES MATHEMATICAE, 2006, 166 (03) :523-535
[7]   Pressure Beneath a Solitary Water Wave: Mathematical Theory and Experiments [J].
Constantin, Adrian ;
Escher, Joachim ;
Hsu, Hung-Chu .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 201 (01) :251-269
[8]  
Constantin A, 2010, Q APPL MATH, V68, P81
[9]   Pressure Beneath a Stokes Wave [J].
Constantin, Adrian ;
Strauss, Walter .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2010, 63 (04) :533-557
[10]   On the Recovery of the Free Surface from the Pressure within Periodic Traveling Water Waves [J].
Escher, Joachim ;
Schlurmann, Torsten .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (Suppl 2) :50-57