On computing of arbitrary positive integer powers for one type of symmetric tridiagonal matrices of even order-I

被引:16
作者
Rimas, J [1 ]
机构
[1] Kaunas Univ Technol, Fac Fundamental Sci, Dept Appl Math, LT-31455 Kaunas, Lithuania
关键词
tridiagonal matrices; eigenvalues; eigenvectors; Jordan's form; Chebyshev polynomials;
D O I
10.1016/j.amc.2004.09.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we derive the general expression of the Ith power (I c N) for one type of symmetric tridiagonal matrices of order n = p is an element of N). (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:783 / 787
页数:5
相关论文
共 5 条
[1]  
Agarwal RP, 1992, Difference equations and inequalities
[2]  
Fox L., 1968, CHEBYSHEV POLYNOMIAL
[3]  
Horn P., 1986, MATRIX ANAL
[4]  
James G., 2004, ADV MODERN ENG MATH
[5]  
RIMAS IZ, 1977, TELECOMM RADIO ENG+, V31-2, P68