Using neural networks for the derivation of Runge-Kutta-Nystrom pairs for integration of orbits

被引:10
作者
Tsitouras, Ch [1 ]
Famelis, I. Th [2 ]
机构
[1] TEI Chalkis, Dept Appl Sci, GR-34400 Psahna, Greece
[2] TEI Athens, Dept Math, GR-12210 Egaleo, Greece
关键词
Neural networks; Runge-Kutta; Kepler problem; Differential evolution;
D O I
10.1016/j.newast.2011.11.009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper we present Runge-Kutta-Nystrom (RKN) pairs of orders 4(3) and 6(4). We choose a test orbit from the Kepler problem to integrate for a specific tolerance. Then we train the free parameters of the above RKN4(3) and RKN6(4) families to perform optimally. For that we form a neural network approach and minimize its objective function using a differential evolution optimization technique. Finally we observe that the produced pairs outperform standard pairs from the literature for Pleiades orbits and Kepler problem over a wide range of eccentricities and tolerances. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:469 / 473
页数:5
相关论文
共 12 条
[1]  
Butcher JC., 1987, The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods
[2]   FAMILIES OF RUNGE-KUTTA-NYSTROM FORMULAS [J].
DORMAND, JR ;
ELMIKKAWY, MEA ;
PRINCE, PJ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (02) :235-250
[3]  
Hairer Ernst, 2000, Solving Ordinary Differential Equations I, Nonstiff Problems
[4]  
Mazzia Francesca, 42008 U BAR DEP MATH
[5]   High phase-lag-order Runge-Kutta and Nystrom pairs [J].
Papakostas, SN ;
Tsitouras, C .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02) :747-763
[6]  
PRICE K, 2006, DIFFERENTIAL EVOLUTI, DOI 10.1007/3-540-31306-0
[7]   The performance of phase-lag enhanced explicit Runge-Kutta Nystrom pairs on N-body problems [J].
Sharp, P. W. ;
Castillo-Rogez, J. C. ;
Grazier, K. R. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (09) :2378-2386
[8]   Neural networks with multidimensional transfer functions [J].
Tsitouras, C .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (01) :222-228
[9]   A tenth order symplectic Runge-Kutta-Nystrom method [J].
Tsitouras, C .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1999, 74 (04) :223-230
[10]   Cheap error estimation for Runge-Kutta methods [J].
Tsitouras, C ;
Papakostas, SN .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (06) :2067-2088