Electronic structure and dynamic properties of two-dimensional W x Mo 1? x S 2 ternary alloys from first -principles calculations

被引:10
作者
Meng, Dongxue [1 ]
Li, Mingkai [1 ]
Long, Debing [1 ]
Cheng, Yang [1 ]
Ye, Pan [1 ]
Fu, Wang [1 ]
E, Wentao [1 ]
Luo, Wei [2 ]
He, Yunbin [1 ]
机构
[1] Hubei Univ, Hubei Key Lab Ferro & Piezoelect Mat & Devices, Key Lab Green Preparat & Applicat Funct Mat,Minis, Hubei Key Lab Polymer Mat,Sch Mat Sci & Engn, Wuhan 430062, Peoples R China
[2] Uppsala Univ, Dept Phys & Astron, Condensed Matter Theory Grp, Box 516, S-75120 Uppsala, Sweden
基金
中国国家自然科学基金;
关键词
METAL DICHALCOGENIDE ALLOYS; TRANSITION; HETEROSTRUCTURES; MOS2/WS2; STABILITY;
D O I
10.1016/j.commatsci.2020.109797
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two-dimensional transition metal dichalcogenide materials are of great interest for the development of semiconductor devices because of their diverse properties. In this paper, we discovered the ground states of WxMo1− xS2 alloys and discussed their electronic structures and phonon properties in detail by the cluster expansion method and the first principle calculation. Three ground-state structures of WxMo1− xS2 alloys, W1/3Mo2/3S2, W1/2Mo1/2S2, and W2/3Mo1/3S2, have low order–disorder phase transition temperatures, T1/3 = 102.3 K, T1/2 = 87.8 K, and T2/3 = 102.2 K, estimated by mean field theory. Their bandgaps exhibit a nonlinear increase with increasing W content. All ground structures are dynamically stable without imagine frequency in phonon dispersion. W doping into single layer MoS2 leads low frequency optical modes hybriding with acoustic modes and lowering down the low frequency band due to larger mass of W atoms. All these may improve the developments of WxMo1− xS2 alloys devices. © 2020 Elsevier B.V.
引用
收藏
页数:9
相关论文
共 52 条
  • [1] Reliability Models for the Internet of Things: A Paradigm Shift
    Ahmad, Mudasir
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING WORKSHOPS (ISSREW), 2014, : 52 - 61
  • [2] ELECTRONEGATIVITY VALUES FROM THERMOCHEMICAL DATA
    ALLRED, AL
    [J]. JOURNAL OF INORGANIC & NUCLEAR CHEMISTRY, 1961, 17 (3-4): : 215 - 221
  • [3] Mechanical and Electronic Properties of MoS2 Nanoribbons and Their Defects
    Ataca, C.
    Sahin, H.
    Akturk, E.
    Ciraci, S.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (10) : 3934 - 3941
  • [4] Spontaneous Formation of Atomically Thin Stripes in Transition Metal Dichalcogenide Monolayers
    Azizi, Amin
    Wang, Yuanxi
    Lin, Zhong
    Wang, Ke
    Elias, Ana Laura
    Terrones, Mauricio
    Crespi, Vincent H.
    Alem, Nasim
    [J]. NANO LETTERS, 2016, 16 (11) : 6982 - 6987
  • [5] Second-order structural phase transitions, free energy curvature, and temperature-dependent anharmonic phonons in the self-consistent harmonic approximation: Theory and stochastic implementation
    Bianco, Raffaello
    Errea, Ion
    Paulatto, Lorenzo
    Calandra, Matteo
    Mauri, Francesco
    [J]. PHYSICAL REVIEW B, 2017, 96 (01)
  • [6] One-dimensional metallic edge states in MoS2 -: art. no. 196803
    Bollinger, MV
    Lauritsen, JV
    Jacobsen, KW
    Norskov, JK
    Helveg, S
    Besenbacher, F
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (19) : 1 - 196803
  • [7] Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage
    Bonaccorso, Francesco
    Colombo, Luigi
    Yu, Guihua
    Stoller, Meryl
    Tozzini, Valentina
    Ferrari, Andrea C.
    Ruoff, Rodney S.
    Pellegrini, Vittorio
    [J]. SCIENCE, 2015, 347 (6217)
  • [8] Tunable Band Gap Photoluminescence from Atomically Thin Transition-Metal Dichalcogenide Alloys
    Chen, Yanfeng
    Xi, Jinyang
    Dumcenco, Dumitru O.
    Liu, Zheng
    Suenaga, Kazu
    Wang, Dong
    Shuai, Zhigang
    Huang, Ying-Sheng
    Xie, Liming
    [J]. ACS NANO, 2013, 7 (05) : 4610 - 4616
  • [9] Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/NCHEM.1589, 10.1038/nchem.1589]
  • [10] Optical Properties of 2D Semiconductor WS2
    Cong, Chunxiao
    Shang, Jingzhi
    Wang, Yanlong
    Yu, Ting
    [J]. ADVANCED OPTICAL MATERIALS, 2018, 6 (01):