Region-Kernel-Based Support Vector Machines for Hyperspectral Image Classification

被引:136
|
作者
Peng, Jiangtao [1 ,2 ,3 ]
Zhou, Yicong [3 ]
Chen, C. L. Philip [3 ]
机构
[1] Hubei Univ, Fac Math & Stat, Wuhan 430062, Peoples R China
[2] Hubei Univ, Hubei Prov Key Lab Appl Math, Wuhan 430062, Peoples R China
[3] Univ Macau, Dept Comp & Informat Sci, Macau 999078, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2015年 / 53卷 / 09期
基金
中国国家自然科学基金;
关键词
Composite kernel; hyperspectral image (HSI) classification; region kernel; support vector machine (SVM); REMOTE-SENSING IMAGES; EXTRACTION; FRAMEWORK; FEATURES;
D O I
10.1109/TGRS.2015.2410991
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper proposes a region kernel to measure the region-to-region distance similarity for hyperspectral image (HSI) classification. The region kernel is designed to be a linear combination of multiscale box kernels, which can handle the HSI regions with arbitrary shape and size. Integrating labeled pixels and labeled regions, we further propose a region-kernel-based support vector machine (RKSVM) classification framework. In RKSVM, three different composite kernels are constructed to describe the joint spatial-spectral similarity. Particularly, we design a desirable stack composite kernel that consists of the point-based kernel, the region-based kernel, and the cross point-to-region kernel. The effectiveness of the proposed RKSVM is validated on three benchmark hyperspectral data sets. Experimental results show the superiority of our region kernel method over the classical point kernel methods.
引用
收藏
页码:4810 / 4824
页数:15
相关论文
共 50 条
  • [1] HYPERSPECTRAL IMAGE CLASSIFICATION WITH SUPPORT VECTOR MACHINES ON KERNEL DISTRIBUTION EMBEDDINGS
    Franchi, Gianni
    Angulo, Jesus
    Sejdinovic, Dino
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1898 - 1902
  • [2] Subspace-Based Support Vector Machines for Hyperspectral Image Classification
    Gao, Lianru
    Li, Jun
    Khodadadzadeh, Mahdi
    Plaza, Antonio
    Zhang, Bing
    He, Zhijian
    Yan, Huiming
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (02) : 349 - 353
  • [3] Hyperspectral Image Classification With Kernel-Based Least-Squares Support Vector Machines in Sum Space
    Liu, Lu
    Huang, Wei
    Wang, Cheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (04) : 1144 - 1157
  • [4] COMBINING ENSEMBLE TECHNIQUE OF SUPPORT VECTOR MACHINES WITH THE OPTIMAL KERNEL METHOD FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Kuo, Bor-Chen
    Chen, I-Ling
    Li, Cheng-Hsuan
    Hung, Chih-Cheng
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 3903 - 3906
  • [5] Support vector machines for hyperspectral image classification with spectral-based kernels
    Mercier, G
    Lennon, M
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 288 - 290
  • [6] Weighted Kernel Function Implementation for Hyperspectral Image Classification Based On Support Vector Machine
    Soelaiman, Rully
    Asfiandy, Dommy
    Purwananto, Yudhi
    Purnomo, Mauridhi H.
    ICICI-BME: 2009 INTERNATIONAL CONFERENCE ON INSTRUMENTATION, COMMUNICATION, INFORMATION TECHNOLOGY, AND BIOMEDICAL ENGINEERING, 2009, : 63 - +
  • [7] Support Vector Machine with Adaptive Composite Kernel for Hyperspectral Image Classification
    Li, Wei
    Du, Qian
    SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING XI, 2015, 9501
  • [8] GPU Parallel Implementation of Support Vector Machines for Hyperspectral Image Classification
    Tan, Kun
    Zhang, Junpeng
    Du, Qian
    Wang, Xuesong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (10) : 4647 - 4656
  • [9] Support vector machines for classification of hyperspectral data
    Gualtieri, JA
    Chettri, S
    IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 813 - 815
  • [10] Classification of Hyperspectral Images with Support Vector Machines
    Andreola, Rafaela
    Haertel, Vitor
    BOLETIM DE CIENCIAS GEODESICAS, 2010, 16 (02): : 210 - 231