Adiabat-shaping in indirect drive inertial confinement fusion

被引:35
作者
Baker, K. L. [1 ]
Robey, H. F. [1 ]
Milovich, J. L. [1 ]
Jones, O. S. [1 ]
Smalyuk, V. A. [1 ]
Casey, D. T. [1 ]
MacPhee, A. G. [1 ]
Pak, A. [1 ]
Celliers, P. M. [1 ]
Clark, D. S. [1 ]
Landen, O. L. [1 ]
Peterson, J. L. [1 ]
Berzak-Hopkins, L. F. [1 ]
Weber, C. R. [1 ]
Haan, S. W. [1 ]
Doeppner, T. D. [1 ]
Dixit, S. [1 ]
Giraldez, E. [2 ]
Hamza, A. V. [1 ]
Jancaitis, K. S. [1 ]
Kroll, J. J. [1 ]
Lafortune, K. N. [1 ]
MacGowan, B. J. [1 ]
Moody, J. D. [1 ]
Nikroo, A. [2 ]
Widmayer, C. C. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Gen Atom Co, San Diego, CA 95121 USA
关键词
IGNITION; INSTABILITY; IMPLOSIONS;
D O I
10.1063/1.4919694
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Adiabat-shaping techniques were investigated in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform for both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. This approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 37 条
[1]   Theory of laser-induced adiabat shaping in inertial fusion implosions: The decaying shock [J].
Anderson, K ;
Betti, R .
PHYSICS OF PLASMAS, 2003, 10 (11) :4448-4462
[2]   LASER INTERFEROMETER FOR MEASURING HIGH VELOCITIES OF ANY REFLECTING SURFACE [J].
BARKER, LM ;
HOLLENBACH, RE .
JOURNAL OF APPLIED PHYSICS, 1972, 43 (11) :4669-+
[3]   Precision equation-of-state measurements on National Ignition Facility ablator materials from 1 to 12 Mbar using laser-driven shock waves [J].
Barrios, M. A. ;
Boehly, T. R. ;
Hicks, D. G. ;
Fratanduono, D. E. ;
Eggert, J. H. ;
Collins, G. W. ;
Meyerhofer, D. D. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (09)
[4]   Theory of laser-induced adiabat shaping in inertial fusion, implosions: The relaxation method [J].
Betti, R ;
Anderson, K ;
Knauer, J ;
Collins, TJB ;
McCrory, RL ;
McKenty, RW ;
Skupsky, S .
PHYSICS OF PLASMAS, 2005, 12 (04) :1-18
[5]   Reduced instability growth with high-adiabat high-foot implosions at the National Ignition Facility [J].
Casey, D. T. ;
Smalyuk, V. A. ;
Raman, K. S. ;
Peterson, J. L. ;
Hopkins, L. Berzak ;
Callahan, D. A. ;
Clark, D. S. ;
Dewald, E. L. ;
Dittrich, T. R. ;
Haan, S. W. ;
Hinkel, D. E. ;
Hoover, D. ;
Hurricane, O. A. ;
Kroll, J. J. ;
Landen, O. L. ;
Moore, A. S. ;
Nikroo, A. ;
Park, H.-S. ;
Remington, B. A. ;
Robey, H. F. ;
Rygg, J. R. ;
Salmonson, J. D. ;
Tommasini, R. ;
Widmann, K. .
PHYSICAL REVIEW E, 2014, 90 (01)
[6]   Shock-induced transformation of liquid deuterium into a metallic fluid [J].
Celliers, PM ;
Collins, GW ;
Da Silva, LB ;
Gold, DM ;
Cauble, R ;
Wallace, RJ ;
Foord, ME ;
Hammel, BA .
PHYSICAL REVIEW LETTERS, 2000, 84 (24) :5564-5567
[7]   Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility [J].
Celliers, PM ;
Bradley, DK ;
Collins, GW ;
Hicks, DG ;
Boehly, TR ;
Armstrong, WJ .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (11) :4916-4929
[8]   A survey of pulse shape options for a revised plastic ablator ignition design [J].
Clark, D. S. ;
Milovich, J. L. ;
Hinkel, D. E. ;
Salmonson, J. D. ;
Peterson, J. L. ;
Hopkins, L. F. Berzak ;
Eder, D. C. ;
Haan, S. W. ;
Jones, O. S. ;
Marinak, M. M. ;
Robey, H. F. ;
Smalyuk, V. A. ;
Weber, C. R. .
PHYSICS OF PLASMAS, 2014, 21 (11)
[9]   Dante soft x-ray power diagnostic for National Ignition Facility [J].
Dewald, EL ;
Campbell, KM ;
Turner, RE ;
Holder, JP ;
Landen, OL ;
Glenzer, SH ;
Kauffman, RL ;
Suter, LJ ;
Landon, M ;
Rhodes, M ;
Lee, D .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (10) :3759-3761
[10]   Progress towards ignition on the National Ignition Facility [J].
Edwards, M. J. ;
Patel, P. K. ;
Lindl, J. D. ;
Atherton, L. J. ;
Glenzer, S. H. ;
Haan, S. W. ;
Kilkenny, J. D. ;
Landen, O. L. ;
Moses, E. I. ;
Nikroo, A. ;
Petrasso, R. ;
Sangster, T. C. ;
Springer, P. T. ;
Batha, S. ;
Benedetti, R. ;
Bernstein, L. ;
Betti, R. ;
Bleuel, D. L. ;
Boehly, T. R. ;
Bradley, D. K. ;
Caggiano, J. A. ;
Callahan, D. A. ;
Celliers, P. M. ;
Cerjan, C. J. ;
Chen, K. C. ;
Clark, D. S. ;
Collins, G. W. ;
Dewald, E. L. ;
Divol, L. ;
Dixit, S. ;
Doeppner, T. ;
Edgell, D. H. ;
Fair, J. E. ;
Farrell, M. ;
Fortner, R. J. ;
Frenje, J. ;
Johnson, M. G. Gatu ;
Giraldez, E. ;
Glebov, V. Yu ;
Grim, G. ;
Hammel, B. A. ;
Hamza, A. V. ;
Harding, D. R. ;
Hatchett, S. P. ;
Hein, N. ;
Herrmann, H. W. ;
Hicks, D. ;
Hinkel, D. E. ;
Hoppe, M. ;
Hsing, W. W. .
PHYSICS OF PLASMAS, 2013, 20 (07)