Near real-time vegetation anomaly detection with MODIS NDVI: Timeliness vs. accuracy and effect of anomaly computation options

被引:65
|
作者
Meroni, Michele [1 ]
Fasbender, Dominique [1 ]
Rembold, Felix [1 ]
Atzberger, Clement [2 ]
Klisch, Anja [2 ]
机构
[1] European Commiss, JRC, Via E Fermi 2749, I-21027 Ispra, VA, Italy
[2] Univ Nat Resources & Life Sci BOKU, Inst Surveying Remote Sensing & Land Informat, Peter Jordan Str 82, A-1190 Vienna, Austria
关键词
Early warning; MODIS; NDVI; Anomalies; Near real-time estimation; Timeliness; Accuracy; DROUGHT; SERIES; AFRICA; INDEX; DYNAMICS; HORN;
D O I
10.1016/j.rse.2018.11.041
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
For food crises early warning purposes, coarse spatial resolution NDVI data are widely used to monitor vegetation conditions in near real-time (NRT). Different types of NDVI anomalies are typically employed to assess the current state of crops and rangelands as compared to previous years. Timeliness and accuracy of such anomalies are critical factors to an effective monitoring. Temporal smoothing can efficiently reduce noise and cloud contamination in the time series of historical observations, where data points are available before and after each observation to be smoothed. With NRT data, smoothing methods are adapted to cope with the unbalanced availability of data before and after the most recent data points. These NRT approaches provide successive updates of the estimation of the same data point as more observations become available. Anomalies compare the current NDVI value with some statistics (e.g. indicators of central tendency and dispersion) extracted from the historical archive of observations. With multiple updates of the same datasets being available, two options can be selected to compute anomalies, i.e. using the same update level for the NRT data and the statistics or using the most reliable update for the latter. In this study we assess the accuracy of three commonly employed 1 km MODIS NDVI anomalies (standard scores, non-exceedance probability and vegetation condition index) with respect to (1) delay with which they become available and (2) option selected for their computation. We show that a large estimation error affects the earlier estimates and that this error is efficiently reduced in subsequent updates. In addition, with regards to the preferable option to compute anomalies, we empirically observe that it depends on the type of application (e.g. averaging anomalies value over an area of interest vs. detecting "drought" conditions by setting a threshold on the anomaly value) and the employed anomaly type. Finally, we map the spatial pattern in the magnitude of NRT anomaly estimation errors over the globe and relate it to average cloudiness.
引用
收藏
页码:508 / 521
页数:14
相关论文
共 50 条
  • [21] An Adaptive Approach to Granular Real-Time Anomaly Detection
    Huang, Chin-Tser
    Janies, Jeff
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2009,
  • [22] Fates: A granular approach to real-time anomaly detection
    Janies, Jeff
    Huang, Chin-Tser
    PROCEEDINGS - 16TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS AND NETWORKS, VOLS 1-3, 2007, : 605 - 610
  • [23] ADWICE - Anomaly detection with real-time incremental clustering
    Burbeck, K
    Nadjm-Tehrani, S
    INFORMATION SECURITY AND CRYPTOLOGY - ICISC 2004, 2004, 3506 : 407 - 424
  • [24] Adaptive real-time anomaly detection in cloud infrastructures
    Agrawal, Bikash
    Wiktorski, Tomasz
    Rong, Chunming
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2017, 29 (24):
  • [25] Unsupervised real-time anomaly detection for streaming data
    Ahmad, Subutai
    Lavin, Alexander
    Purdy, Scott
    Agha, Zuha
    NEUROCOMPUTING, 2017, 262 : 134 - 147
  • [26] ADSaS: Comprehensive Real-Time Anomaly Detection System
    Lee, Sooyeon
    Kim, Huy Kang
    INFORMATION SECURITY APPLICATIONS, WISA 2018, 2019, 11402 : 29 - 41
  • [27] An Adaptive Approach to Granular Real-Time Anomaly Detection
    Chin-Tser Huang
    Jeff Janies
    EURASIP Journal on Advances in Signal Processing, 2009
  • [28] Real-time anomaly detection in full motion video
    Konowicz, Glenn
    Li, Jiang
    FULL MOTION VIDEO (FMV) WORKFLOWS AND TECHNOLOGIES FOR INTELLIGENCE, SURVEILLANCE, AND RECONNAISSANCE (ISR) AND SITUATIONAL AWARENESS, 2012, 8386
  • [29] Real-time multiple object tracking and anomaly detection
    Han, M
    Gong, YH
    STORAGE AND RETRIEVAL METHODS AND APPLICATIONS FOR MULTIMEDIA 2005, 2005, 5682 : 173 - 182
  • [30] Developing a near real-time road surface anomaly detection approach for road surface monitoring
    Sattar, Shahram
    Li, Songnian
    Chapman, Michael
    MEASUREMENT, 2021, 185