Subsurface CO2 storage estimation in Bakken tight oil and Eagle Ford shale gas condensate reservoirs by retention mechanism

被引:43
|
作者
Pranesh, Venkat [1 ]
机构
[1] Coventry Univ, Petr & Environm Technol Div, Coventry, W Midlands, England
关键词
CO2; emissions; Unconventional reservoir; EOR; Hysteresis modelling; retention; Geological sequestration; HUFF-N-PUFF; CAPACITY ESTIMATION; LOW PERMEABILITY; RECOVERY; INJECTION; SEQUESTRATION; GEOMECHANICS; PERFORMANCE; SIMULATION; PRESSURE;
D O I
10.1016/j.fuel.2017.11.049
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper describes the CO2 geological sequestration process in unconventional reservoirs in northern and southern United States such as Bakken tight oil and Eagle Ford shale gas condensate reservoirs. The hysteresis modelling and retention mechanism was performed in this research and this is one of the efficient and proven method to store CO2 in the subsurface. This can be achieved through CO2 EOR process while injecting CO2, the fluid will be trapped in the pore spaces between the impermeable rocks and oil can be recovered simultaneously. A total of four cases was taken for the analysis, such as the Bakken and Eagle Ford reservoirs with CO2 huff-n-puff process and another two cases with CO2 Flooding. Injection pressure, injection rate, injection time, number of cycles, carbon dioxide soaking time, fracture half-length, fracture conductivity, fracture spacing, porosity, permeability, and initial reservoir pressure as is taken as inputs and cumulative oil production, and oil recovery factor was taken as outputs. The reservoirs were modelled for 30 years of oil production and the factor year was taken as Decision Making Unit (DMU) and the models was calculated at each year. The retention was successfully calculated in all four models and percentage of retention above 90% was observed in all four cases and the injection pressure has the most dominating effect on the CO2 geological sequestration. It was also revealed that the CO2 huff-n-puff performance in Bakken reservoir is not that much more effective since the retention rate decreases during soaking period and flooding was found to be a suitable method in this formation. Even in Eagle Ford formation, the average performance of CO2 flooding process is better than the huff-n-puff, but the latter process was quite effective in this shale gas condensate reservoir.
引用
收藏
页码:580 / 591
页数:12
相关论文
共 50 条
  • [31] Evaluation of the impact of CO2 geological storage on tight oil reservoir properties
    Dai, Yuting
    Lai, Fengpeng
    Ni, Jun
    Liang, Yisheng
    Shi, Hao
    Shi, Gongshuai
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 212
  • [32] The influence of irreducible water for enhancing CH4 recovery in combination of CO2 storage with CO2 injection in gas reservoirs
    He, Chang
    Ji, Zemin
    Geng, Xiaoyan
    Zhou, Mengfei
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2023, 126
  • [33] The microscopic pore crude oil production characteristics and influencing factors by DME-assisted CO2 injection in shale oil reservoirs
    Huang, Xing
    Tian, Zhen
    Zuo, Xiongdi
    Li, Xiang
    Yang, Weipeng
    Lu, Jun
    FUEL, 2023, 331
  • [34] A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs
    Jia, Bao
    Tsau, Jyun-Syung
    Barati, Reza
    FUEL, 2019, 236 : 404 - 427
  • [35] Compositional simulation of CO2 Huff-n-Puff process in Middle Bakken tight oil reservoirs with hydraulic fractures
    Sun, Runxuan
    Yu, Wei
    Xu, Feng
    Pu, Hui
    Miao, Jijun
    FUEL, 2019, 236 : 1446 - 1457
  • [36] Molecular insight into the oil displacement mechanism of CO2 flooding in the nanopores of shale oil reservoir
    Dong, Xiao-Hu
    Xu, Wen-Jing
    Liu, Hui-Qing
    Chen, Zhang-Xing
    Lu, Ning
    PETROLEUM SCIENCE, 2023, 20 (06) : 3516 - 3529
  • [37] Enhanced Oil Recovery and CO2 Storage Performance in Continental Shale Oil Reservoirs Using CO2 Pre-Injection Fracturing
    Zhang, An
    Lei, Yalin
    Zhang, Chenjun
    Tao, Jiaping
    PROCESSES, 2023, 11 (08)
  • [38] Different ways to approach shale reservoirs' CO2 storage potential in America
    Ni, Ruichong
    Ling, Kegang
    Afari, Samuel
    HELIYON, 2023, 9 (08)
  • [39] Suitability of depleted gas reservoirs for geological CO2 storage: A simulation study
    Raza, Arshad
    Gholami, Raoof
    Rezaee, Reza
    Rasouli, Vamegh
    Bhatti, Amanat Ali
    Bing, Chua Han
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2018, 8 (05): : 876 - 897
  • [40] Simulation Study of CO2 Huff-n-Puff in Tight Oil Reservoirs Considering Molecular Diffusion and Adsorption
    Zhang, Yuan
    Hu, Jinghong
    Zhang, Qi
    ENERGIES, 2019, 12 (11)