Subsurface CO2 storage estimation in Bakken tight oil and Eagle Ford shale gas condensate reservoirs by retention mechanism

被引:43
|
作者
Pranesh, Venkat [1 ]
机构
[1] Coventry Univ, Petr & Environm Technol Div, Coventry, W Midlands, England
关键词
CO2; emissions; Unconventional reservoir; EOR; Hysteresis modelling; retention; Geological sequestration; HUFF-N-PUFF; CAPACITY ESTIMATION; LOW PERMEABILITY; RECOVERY; INJECTION; SEQUESTRATION; GEOMECHANICS; PERFORMANCE; SIMULATION; PRESSURE;
D O I
10.1016/j.fuel.2017.11.049
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper describes the CO2 geological sequestration process in unconventional reservoirs in northern and southern United States such as Bakken tight oil and Eagle Ford shale gas condensate reservoirs. The hysteresis modelling and retention mechanism was performed in this research and this is one of the efficient and proven method to store CO2 in the subsurface. This can be achieved through CO2 EOR process while injecting CO2, the fluid will be trapped in the pore spaces between the impermeable rocks and oil can be recovered simultaneously. A total of four cases was taken for the analysis, such as the Bakken and Eagle Ford reservoirs with CO2 huff-n-puff process and another two cases with CO2 Flooding. Injection pressure, injection rate, injection time, number of cycles, carbon dioxide soaking time, fracture half-length, fracture conductivity, fracture spacing, porosity, permeability, and initial reservoir pressure as is taken as inputs and cumulative oil production, and oil recovery factor was taken as outputs. The reservoirs were modelled for 30 years of oil production and the factor year was taken as Decision Making Unit (DMU) and the models was calculated at each year. The retention was successfully calculated in all four models and percentage of retention above 90% was observed in all four cases and the injection pressure has the most dominating effect on the CO2 geological sequestration. It was also revealed that the CO2 huff-n-puff performance in Bakken reservoir is not that much more effective since the retention rate decreases during soaking period and flooding was found to be a suitable method in this formation. Even in Eagle Ford formation, the average performance of CO2 flooding process is better than the huff-n-puff, but the latter process was quite effective in this shale gas condensate reservoir.
引用
收藏
页码:580 / 591
页数:12
相关论文
共 50 条
  • [21] Experimental Investigation on the CO2 Effective Distance and CO2-EOR Storage for Tight Oil Reservoir
    Qi, Songchao
    Yu, Haiyang
    Xie, Feifan
    Hu, Mengpo
    Lu, Jun
    Wang, Yang
    ENERGY & FUELS, 2022, 37 (01) : 339 - 349
  • [22] Integrated study on CO2 enhanced oil recovery and geological storage in tight oil reservoirs
    Li, Lei
    Liu, Yunfan
    Su, Yuliang
    Niu, Hongwei
    Hou, Zihan
    Hao, Yongmao
    GEOENERGY SCIENCE AND ENGINEERING, 2024, 241
  • [23] Study on CO2 huff-n-puff of horizontal wells in continental tight oil reservoirs
    Tang Mingming
    Zhao Hongyu
    Ma Huifang
    Lu Shuangfang
    Chen Yuming
    FUEL, 2017, 188 : 140 - 154
  • [24] CO2-Enhanced Oil Recovery Mechanism in Canadian Bakken Shale
    Bizhani, Majid
    Ardakani, Omid Haeri
    Hawthorne, Steven B.
    Cesar, Jaime
    Kurz, Bethany
    Percival, Jeanne B.
    MINERALS, 2022, 12 (06)
  • [25] Compositional Simulation of CO2 Huff 'n' Puff in Eagle Ford Tight Oil Reservoirs With CO2 Molecular Diffusion, Nanopore Confinement, and Complex Natural Fractures
    Yu, Wei
    Zhang, Yuan
    Varavei, Abdoljalil
    Sepehrnoori, Kamy
    Zhang, Tongwei
    Wu, Kan
    Miao, Jijun
    SPE RESERVOIR EVALUATION & ENGINEERING, 2019, 22 (02) : 492 - 508
  • [26] Research on microscale displacement characteristics of supercritical CO2 fracturing in shale oil reservoirs
    Dai, Xiaodong
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2024,
  • [27] Factor analysis and mechanism disclosure of supercritical CO2 filtration behavior in tight shale reservoirs
    Li, Qiang
    Wang, Yanling
    Wang, Fuling
    Ning, Xu
    Chuanbao, Zhang
    Zhang, Jinyan
    Zhang, Chenglin
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (12) : 17682 - 17694
  • [28] Evaluation of CO2 enhanced oil recovery in unconventional reservoirs: Experimental parametric study in the Bakken
    Badrouchi, Nidhal
    Pu, Hui
    Smith, Steven
    Badrouchi, Foued
    FUEL, 2022, 312
  • [29] Stimulation and Sequestration Mechanism of CO2 Waterless Fracturing for Continental Tight Oil Reservoirs
    Tao, Jiaping
    Meng, Siwei
    Jin, Xu
    Xu, Jianguo
    Yang, Qinghai
    Wang, Xiaoqi
    Liu, He
    Peng, Bo
    ACS OMEGA, 2021, 6 (32): : 20758 - 20767
  • [30] EXPERIMENTAL STUDY ON ENHANCED OIL RECOVERY BY CO2 INJECTION IN TIGHT GAS RESERVOIRS
    Wang, Huaijing
    Wei, Jiaqiang
    Xu, Haoyin
    Zhang, Pengyu
    FRESENIUS ENVIRONMENTAL BULLETIN, 2022, 31 (12): : 11755 - 11761