Cylindrical type integrable classical systems in a magnetic field

被引:12
作者
Fournier, F. [1 ]
Snobl, L. [2 ]
Winternitz, P. [3 ,4 ]
机构
[1] Univ Montreal, Dept Phys, Fac Arts & Sci, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
[2] Czech Tech Univ, Dept Phys, Fac Nucl Sci & Phys Engn, Brehova 7, Prague 11519 1, Czech Republic
[3] Univ Montreal, Ctr Rech Math, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
[4] Univ Montreal, Dept Math & Stat, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
integrability; superintegrability; classical mechanics; magnetic field; HAMILTONIAN-SYSTEMS; EXACT SOLVABILITY; SUPERINTEGRABLE SYSTEMS; QUADRATIC HAMILTONIANS; 3RD-ORDER INTEGRALS; QUANTUM; SYMMETRIES; LAME;
D O I
10.1088/1751-8121/ab64a6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present all second order classical integrable systems of the cylindrical type in a three dimensional Euclidean space E-3 with a nontrivial magnetic field. The Hamiltonian and integrals of motion have the form H = 1/2 ((p) over right arrow + (A) triple over dot((x) over right arrow))2 + W((x) over right arrow), X-1 = (p(phi)(A))(2) + s(1)(r)(r, phi, Z) p(r)(A) + S-1(phi)(r, phi, Z) p(phi)(A) + s(1)(Z)(r, phi, Z) p(Z)(A) + m(1)(r, phi, Z), X-2 = (p(Z)(A))(2) + s(2)(r)(r, phi, Z) p(r)(A) + S-2(phi)(r, phi, Z) p(phi)(A) + s(2)(Z)(r, phi, Z) p(Z)(A) + m(2)(r, phi, Z), Infinite families of such systems are found, in general depending on arbitrary functions or parameters. This leaves open the possibility of finding superintegrable systems among the integrable ones (i.e. systems with 1 or 2 additional independent integrals).
引用
收藏
页数:31
相关论文
共 60 条
[1]   Quantum mechanics on spaces of nonconstant curvature: The oscillator problem and superintegrability [J].
Ballesteros, Angel ;
Enciso, Alberto ;
Herranz, Francisco J. ;
Ragnisco, Orlando ;
Riglioni, Danilo .
ANNALS OF PHYSICS, 2011, 326 (08) :2053-2073
[2]   On the theory of the hydrogen atom. [J].
Bargmann, V. .
ZEITSCHRIFT FUR PHYSIK, 1936, 99 (7-8) :576-582
[3]   On rotationally invariant integrable and superintegrable classical systems in magnetic fields with non-subgroup type integrals [J].
Bertrand, S. ;
Snobl, L. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (19)
[4]   Integrable and superintegrable quantum systems in a magnetic field [J].
Bérubé, J ;
Winternitz, P .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (05) :1959-1973
[5]  
Byrd P. F., 1971, Handbook of elliptical integrals for engineers and scientists
[6]   Superintegrable systems on 3-dimensional curved spaces: Eisenhart formalism and separability [J].
Carinena, Jose F. ;
Herranz, Francisco J. ;
Ranada, Manuel F. .
JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (02)
[7]   Quasiseparation of variables in the Schrodinger equation with a magnetic field [J].
Charest, F. ;
Hudon, C. ;
Winternitz, P. .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (01)
[8]   Fourier and Gegenbauer expansions for a fundamental solution of the Laplacian in the hyperboloid model of hyperbolic geometry [J].
Cohl, H. S. ;
Kalnins, E. G. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (14)
[9]   INTEGRABLE HAMILTONIAN-SYSTEMS WITH VELOCITY-DEPENDENT POTENTIALS [J].
DORIZZI, B ;
GRAMMATICOS, B ;
RAMANI, A ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (12) :3070-3079
[10]   General Nth-order superintegrable systems separating in polar coordinates [J].
Escobar-Ruiz, A. M. ;
Winternitz, P. ;
Yurdusen, I .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (40)