Mitigating temozolomide resistance in glioblastoma via DNA damage-repair inhibition

被引:19
作者
Sorribes, Inmaculada C. [1 ]
Handelman, Samuel K. [2 ]
Jain, Harsh V. [3 ]
机构
[1] Duke Univ, Dept Math, Durham, NC 27708 USA
[2] Univ Michigan, Dept Internal Med, Ann Arbor, MI 48109 USA
[3] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
基金
芬兰科学院;
关键词
alkylpurine-DNA-N-glycosylase; glioblastoma; methylguanine-DNA-methyltransferase; mathematical model; temozolomide; FILAMENT PROTEIN SYNEMIN; CENTRAL-NERVOUS-SYSTEM; GLIOMA GROWTH; CELL-PROLIFERATION; RNA INTERFERENCE; TUMORS; MGMT; CHEMOTHERAPY; EXPRESSION; MULTIFORME;
D O I
10.1098/rsif.2019.0722
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Glioblastomas are among the most lethal cancers, with a 5 year survival rate below 25%. Temozolomide is typically used in glioblastoma treatment; however, the enzymes alkylpurine-DNA-N-glycosylase (APNG) and methylguanine-DNA-methyltransferase (MGMT) efficiently mediate the repair of DNA damage caused by temozolomide, reducing treatment efficacy. Consequently, APNG and MGMT inhibition has been proposed as a way of overcoming chemotherapy resistance. Here, we develop a mechanistic mathematical model that explicitly incorporates the effects of chemotherapy on tumour cells, including the processes of DNA damage induction, cell arrest and DNA repair. Our model is carefully parametrized and validated, and then used to virtually recreate the response of heteroclonal glioblastomas to dual treatment with temozolomide and inhibitors of APNG/MGMT. Using our mechanistic model, we identify four combination treatment strategies optimized by tumour cell phenotype, and isolate the strategy most likely to succeed in a pre-clinical and clinical setting. If confirmed in clinical trials, these strategies have the potential to offset chemotherapy resistance in patients with glioblastoma and improve overall survival.
引用
收藏
页数:14
相关论文
共 62 条
[21]  
Haskell CharlesM., 1985, Cancer treatment
[22]   MGMT gene silencing and benefit from temozolomide in glioblastoma [J].
Hegi, ME ;
Diserens, A ;
Gorlia, T ;
Hamou, M ;
de Tribolet, N ;
Weller, M ;
Kros, JM ;
Hainfellner, JA ;
Mason, W ;
Mariani, L ;
Bromberg, JEC ;
Hau, P ;
Mirimanoff, RO ;
Cairncross, JG ;
Janzer, RC ;
Stupp, R .
NEW ENGLAND JOURNAL OF MEDICINE, 2005, 352 (10) :997-1003
[23]  
Hirose Y, 2001, CANCER RES, V61, P5843
[24]  
Jackson JR, 2000, CANCER RES, V60, P566
[25]   Intermediate filament protein synemin is present in human reactive and malignant astrocytes and associates with ruffled membranes in astrocytoma cells [J].
Jing, RF ;
Pizzolato, G ;
Robson, RM ;
Gabbiani, G ;
Skalli, O .
GLIA, 2005, 50 (02) :107-120
[26]   Induction of MGMT expression is associated with temozolomide resistance in glioblastoma xenografts [J].
Kitange, Gaspar J. ;
Carlson, Brett L. ;
Schroeder, Mark A. ;
Grogan, Patrick T. ;
Lamont, Jeff D. ;
Decker, Paul A. ;
Wu, Wenting ;
James, C. David ;
Sarkaria, Jann N. .
NEURO-ONCOLOGY, 2009, 11 (03) :281-291
[27]   Suppression of the cell proliferation and invasion phenotypes in glioma cells by the LGI1 gene [J].
Kunapuli, P ;
Chitta, KS ;
Cowell, JK .
ONCOGENE, 2003, 22 (26) :3985-3991
[28]  
Lecourtier E. Walter, 1982, IFAC Proc., V15, P887, DOI [10.1016/S1474-6670(17)63106-9, DOI 10.1016/S1474-6670(17)63106-9]
[29]   Temozolomide resistance in glioblastoma multiforme [J].
Lee, Sang Y. .
GENES & DISEASES, 2016, 3 (03) :198-210
[30]   GenSSI 2.0: multi-experiment structural identifiability analysis of SBML models [J].
Ligon, Thomas S. ;
Frohlich, Fabian ;
Chis, Oana T. ;
Banga, Julio R. ;
Balsa-Canto, Eva ;
Hasenauer, Jan .
BIOINFORMATICS, 2018, 34 (08) :1421-1423