Visible-near infrared reflectance spectroscopy for rapid, nondestructive assessment of wetland soil quality

被引:89
作者
Cohen, MJ [1 ]
Prenger, JP [1 ]
DeBusk, WF [1 ]
机构
[1] Univ Florida, Wetland Biogeochem Lab, Dept Soil & Water Sci, Gainesville, FL 32611 USA
关键词
D O I
10.2134/jeq2004.0353
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recent evidence supports using visible-near infrared reflectance spectroscopy (VNIRS) for sensing soil quality; advantages include low-cost, nondestructive, rapid analysis that retains high analytical accuracy for numerous soil performance measures. Research has primarily targeted agricultural applications (precision agriculture, performance diagnostics, but implications for assessing ecological systems are equally significant. Our objective was to extend chemometrics for sensing soil quality to wetlands. Hydric soils posed two challenges. First, wetland soils exhibit a wider range of organic matter concentrations, particularly in riparian areas where levels range from < 1% in sedimentation zones to > 90% in backwater floodplains; this may mute spectral responses from other soil fractions. Second, spectral inference of cation concentrations in terrestrial soils is for oxidized species; under reducing conditions in wetlands, oxidation state variability is observed, which strongly affects chroma. Riparian soils (n = 273) from western Florida exhibiting substantial target parameter variability were compiled. After minimal pre-processing, soils were scanned under artificial illumination using a laboratory spectrometer. A multivariate data mining technique (regression trees) was used to relate post-processed reflectance spectra to laboratory observations (pH, organic content, cation concentrations, total N, C, and P, extracellular enzyme activity). High validation accuracy was generally observed (r(validation)(2) > 0.8, RPD > 2.0, where RPD is the ratio of the standard deviation of an attribute to the observed standard error of validation); where accuracy was lower, categorical models (classification trees) successfully screened samples based on diagnostic functional thresholds (validation odds ratio > 10). Graphical models verified significant association between predictions and observations for all parameters, conditioning on biogeochemical covariates. Visiblenear infrared reflectance spectroscopy offers both cost and statistical power advantages; hydric conditions do not appear to constrain application.
引用
收藏
页码:1422 / 1434
页数:13
相关论文
共 60 条
[1]  
Agresti A., 1990, CATEGORICAL DATA ANA
[2]  
AMACHER MC, 1996, SSSA BOOK SER, V5, P757
[3]   IGNITION METHOD FOR DETERMINATION OF TOTAL PHOSPHORUS IN LAKE SEDIMENTS [J].
ANDERSEN, JM .
WATER RESEARCH, 1976, 10 (04) :329-331
[4]  
[Anonymous], SOIL SURVEY LAND EVA
[5]  
[Anonymous], 1993, Method 365.1
[6]   Near-infrared spectroscopy of a hydroecological indicator: new tool for determining sustainable yield for Floridan aquifer system [J].
Bacchus, ST ;
Archibald, DD ;
Brook, GA ;
Britton, KO ;
Haines, BL ;
Rathbun, SL ;
Madden, M .
HYDROLOGICAL PROCESSES, 2003, 17 (09) :1785-1809
[7]  
BARBOUR MT, 1996, DEV STREAM CONDITION
[8]   STANDARD NORMAL VARIATE TRANSFORMATION AND DE-TRENDING OF NEAR-INFRARED DIFFUSE REFLECTANCE SPECTRA [J].
BARNES, RJ ;
DHANOA, MS ;
LISTER, SJ .
APPLIED SPECTROSCOPY, 1989, 43 (05) :772-777
[9]   NEAR-INFRARED ANALYSIS AS A RAPID METHOD TO SIMULTANEOUSLY EVALUATE SEVERAL SOIL PROPERTIES [J].
BENDOR, E ;
BANIN, A .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1995, 59 (02) :364-372
[10]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669