Pseudo-conformal quaternionic CR structure on (4n+3)-dimensional manifolds

被引:14
作者
Alekseevsky, Dmitri [1 ]
Kamishima, Yoshinobu [2 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Tokyo Metropolitan Univ, Dept Math, Tokyo 1920397, Japan
基金
奥地利科学基金会;
关键词
pseudo-conformal quaternionic structure; quaternionic CR structure; quaternionic Kahler manifold; Sasakian; 3-structure; uniformization;
D O I
10.1007/s10231-007-0053-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an integrable, nondegenerate codimension 3-subbundle D on a ( 4n+3)manifold M whose fiber supports the structure of 4n-dimensional quaternionic vector space. It is thought of as a generalization of quaternionic C R structure. We single out an sp(1)- valued 1-form. locally on a neighborhood U such that Null omega = D vertical bar U and construct the curvature invariant on ( M, omega) whose vanishing gives a uniformization to flat quaternionic C R geometry. The invariant obtained on M has the same formula as that of pseudo-quaternionic Kahler 4n-manifolds. From this viewpoint, we exhibit a quaternionic analogue of Chern-Moser's C R structure.
引用
收藏
页码:487 / 529
页数:43
相关论文
共 32 条
[1]  
ALEKSEEVSKII D. V., 1968, FUNCT ANAL APPL, V2, P97, DOI 10.1007/BF01075943
[2]   Quaternionic and para-quaternionic CR structure on (4n+3)-dimensional manifolds [J].
Alekseevsky, Dmitri ;
Kamishima, Yoshinobu .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2004, 2 (05) :732-753
[3]  
[Anonymous], 1978, J DIFFER GEOM
[4]  
BOOTHBY WM, 1962, P AM MATH SOC, V13, P276
[5]  
BOYER CP, 1994, J REINE ANGEW MATH, V455, P183
[6]   3-Sasakian geometry, nilpotent orbits, and exceptional quotients [J].
Boyer, CP ;
Galicki, K ;
Piccinni, P .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2002, 21 (01) :85-110
[7]  
BOYER CP, 1999, SURVEYS DIFFERENTIAL, V6, P123
[8]   SPHERICAL HYPERSURFACES IN COMPLEX MANIFOLDS [J].
BURNS, D ;
SHNIDER, S .
INVENTIONES MATHEMATICAE, 1976, 33 (03) :223-246
[9]  
Cap A, 2003, MATH SCAND, V93, P53
[10]  
CHEN SS, 1974, HYPERBOLIC SPACES CO, P00049