Complete study on a bi-center problem for the Z 2-equivariant cubic vector fields

被引:23
作者
Liu, Yi Rong [1 ]
Li, Ji Bin [1 ,2 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] Kunming Univ Sci & Technol, Sch Sci, Kunming 650093, Peoples R China
基金
中国国家自然科学基金;
关键词
Center problem; Liapunov constant; focal value; integral factor; invariant integral; cubic polynomial system; LIMIT-CYCLES; PLANAR SYSTEM; EQUATIONS;
D O I
10.1007/s10114-011-8412-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the planar Z (2)-equivariant cubic systems having two elementary focuses, the characterization of a bi-center problem and shortened expressions of the first six Liapunov constants are completely discussed. The necessary and sufficient conditions for the existence of the bi-center are obtained. All possible first integrals are given. Under small Z (2)-equivariant cubic perturbations, the conclusion that there exist at most 12 small-amplitude limit cycles with the scheme aOE (c) 6 a 6 > is proved.
引用
收藏
页码:1379 / 1394
页数:16
相关论文
共 14 条
  • [1] Cubic systems and Abel equations
    Devlin, J
    Lloyd, NG
    Pearson, JM
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 147 (02) : 435 - 454
  • [2] An explicit expression of the first Liapunov and period constants with applications
    Gasull, A
    Guillamon, A
    Manosa, V
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 211 (01) : 190 - 212
  • [3] Center problem for several differential equations via Cherkas' method
    Gasull, A
    Torregrosa, J
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 228 (02) : 322 - 343
  • [4] Guckenheimer J., 1990, EXPO MATH, V8, P3
  • [5] A study on the existence of limit cycles of a planar system with third-degree polynomials
    Han, M
    Lin, Y
    Yu, P
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (01): : 41 - 60
  • [6] [刘一戎 Liu Yirong], 2002, [应用数学学报, Acta Mathematicae Applicatae Sinica], V25, P295
  • [7] A cubic system with twelve small amplitude limit cycles
    Liu, YR
    Huang, WT
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2005, 129 (02): : 83 - 98
  • [8] LIU YR, 1990, SCI CHINA SER A, V33, P10
  • [9] The centre and isochronicity problems for some cubic systems
    Romanovski, VG
    Robnik, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (47): : 10267 - 10292
  • [10] Sadovskii A.P., 2000, Differ. Uravn, V36, P1652, DOI DOI 10.1023/A:1017552612453