In Situ TEM observation of the gasification and growth of carbon nanotubes using iron catalysts

被引:63
作者
Feng, Xiaofeng [1 ,2 ]
Chee, See Wee [3 ]
Sharma, Renu [3 ]
Liu, Kai [1 ,2 ]
Xie, Xu [1 ,2 ]
Li, Qunqing [1 ,2 ]
Fan, Shoushan [1 ,2 ]
Jiang, Kaili [1 ,2 ]
机构
[1] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Tsinghua Foxconn Nanotechnol Res Ctr, Beijing 100084, Peoples R China
[3] Arizona State Univ, Leroy Eyring Ctr Solid State Sci, Tempe, AZ 85287 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Carbon nanotubes; gasification; growth; iron catalyst; environmental transmission electron microscopy (ETEM); thermogravimetric analysis (TGA); CHEMICAL-VAPOR-DEPOSITION; TRANSMISSION ELECTRON-MICROSCOPY; NUCLEATION; ARRAYS; SCALE; GRAPHITE; GRAPHENE; HYDROGEN; WATER; NANOPARTICLES;
D O I
10.1007/s12274-011-0133-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report the in situ transmission electron microscope (TEM) observation of the catalytic gasification and growth of carbon nanotubes (CNTs). It was found that iron catalysts can consume the CNTs when pumping out the precursor gas, acetylene, at the growth temperature, and reinitiate the growth when acetylene is re-introduced. The switching between gasification and growth of CNTs can be repeated many times with the same catalyst. To understand the phenomenon, thermogravimetric analysis (TGA) coupled with mass spectroscopy was used to study the mechanism involved. It was shown that the residual water molecules in the growth chamber of the TEM react with and remove carbon atoms of CNTs as carbon monoxide vapor under the action of the catalyst, when the precursor gas is pumped out. This result contributes to a better understanding of the water-assisted and oxygen-assisted synthesis of CNT arrays, and provides useful clues on how to extend the lifetime and improve the activity of the catalysts.
引用
收藏
页码:767 / 779
页数:13
相关论文
共 48 条
[1]   NUCLEATION AND GROWTH OF CARBON DEPOSITS FROM NICKEL CATALYZED DECOMPOSITION OF ACETYLENE [J].
BAKER, RTK ;
BARBER, MA ;
WAITE, RJ ;
HARRIS, PS ;
FEATES, FS .
JOURNAL OF CATALYSIS, 1972, 26 (01) :51-&
[2]   CATALYTIC GASIFICATION OF GRAPHITE BY NICKEL IN VARIOUS GASEOUS ENVIRONMENTS [J].
BAKER, RTK ;
SHERWOOD, RD .
JOURNAL OF CATALYSIS, 1981, 70 (01) :198-214
[3]   Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition [J].
Bower, C ;
Zhou, O ;
Zhu, W ;
Werder, DJ ;
Jin, SH .
APPLIED PHYSICS LETTERS, 2000, 77 (17) :2767-2769
[4]   Exposing Multiple Roles of H2O in High-Temperature Enhanced Carbon Nanotube Synthesis [J].
Bystrzejewski, M. ;
Schoenfelder, R. ;
Cuniberti, G. ;
Lange, H. ;
Huczko, A. ;
Gemming, T. ;
Pichler, T. ;
Buechner, B. ;
Ruemmeli, M. .
CHEMISTRY OF MATERIALS, 2008, 20 (21) :6586-6588
[5]   Controlled Nanocutting of Graphene [J].
Ci, Lijie ;
Xu, Zhiping ;
Wang, Lili ;
Gao, Wei ;
Ding, Feng ;
Kelly, Kevin F. ;
Yakobson, Boris I. ;
Ajayan, Pulickel M. .
NANO RESEARCH, 2008, 1 (02) :116-122
[6]   Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide [J].
Dal, HJ ;
Rinzler, AG ;
Nikolaev, P ;
Thess, A ;
Colbert, DT ;
Smalley, RE .
CHEMICAL PHYSICS LETTERS, 1996, 260 (3-4) :471-475
[7]   Crystallographic etching of few-layer graphene [J].
Datta, Sujit S. ;
Strachan, Douglas R. ;
Khamis, Samuel M. ;
Johnson, A. T. Charlie .
NANO LETTERS, 2008, 8 (07) :1912-1915
[8]  
Dresselhaus M.S., 2001, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications
[9]   The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies [J].
Esconjauregui, Santiago ;
Whelan, Caroline M. ;
Maex, Karen .
CARBON, 2009, 47 (03) :659-669
[10]   Self-oriented regular arrays of carbon nanotubes and their field emission properties [J].
Fan, SS ;
Chapline, MG ;
Franklin, NR ;
Tombler, TW ;
Cassell, AM ;
Dai, HJ .
SCIENCE, 1999, 283 (5401) :512-514